KECE471 Computer Vision

Stereo

Chang-Su Kim

Chapter 11, Computer Vision by Forsyth and Ponce Note: Most contents were copied from the lecture notes of Prof. Kyeong Mu Lee in SNU

Stereo

- Inferring depth information using two cameras like a human
- Two eyes perceives three-dimension

Robot eyes

Stereo

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Teesta suspension bridge-Darjeeling, India

Stereo

- Inferring depth information using two eyes or cameras
- Two eyes perceive 3rd dimension

(a)

Applications

[Matthies,Szeliski,Kanade'88]

Applications

input image

317 images (hemisphere)

ground truth model

Goesele, Curless, Seitz, 2006

Binocular Stereo

Pinhole Camera Model

3D to 2D projection:

Human Stereopsis: Reconstruction

d < 0

Finding Correspondence

Finding Correspondence

General stereo

• What if two cameras are not parallel?

Epipolar Geometry

- Epipolar Constraint
 - A matching points lies on the associated epipolar line
 - It reduces the correspondence problem to 1D search along the epipolar line
 - It reduces the cost and ambiguity of matching

- Simple case
 - Cameras are parallel
 - Focal lengths are the same
 - Two image planes lie on the same plane
- Then, epipolar lines correspond to scan lines
- Rectification is a procedure to convert images so that the assumptions are satisfied
 - It simplifies algorithms
 - It improves efficiency

Reproject (warp) images so that epipolar lines are aligned with the scan lines

 (a) Original image pair overlayed with several epipolar lines.

(b) Image pair transformed by the specialized projective mapping H_p and H'_p . Note that the epipolar lines are now parallel to each other in each image.

[Loop and Zhang, CVPR'99]

(c) Image pair transformed by the similarity H_r and H'_r . Note that the image pair is now rectified (the epipolar lines are horizontally aligned).

(d) Final image rectification after shearing transform H_s and H'_s . Note that the image pair remains rectified, but the horizontal distortion is reduced.

[Loop and Zhang, CVPR'99]

Correspondence: What to Match?

- Objects?
 - More identifiable, but difficult to compute
- Pixels?
 - Easier to handle, but maybe ambiguous
- Edges?
- Collections of pixels (regions)?

Correspondence: Photometric Constraint

- Assume that the same world point has the same intensity in both images.
 - However, it is not true in general
 - Noise
 - Illumination
 - Camera calibration

Pixel Matching

For each scanline, for each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost
- This will never work, so: match windows

Correspondence Using Window Matching

Left

Right

SSD

Left

- Two blocks w_L and w_R
- $SSD = \| w_L w_R \|^2$

Normalization

- There can be differences in gain and sensitivity
- Normalize the pixels in each window

$$\widetilde{\boldsymbol{w}} = \frac{\boldsymbol{w} - \mu \boldsymbol{1}}{\|\boldsymbol{w} - \mu \boldsymbol{1}\|}$$

• Minimizing SSD becomes maximizing NCC (normalized cross correlation) $\|\widetilde{w} - \widetilde{w}\|^2 - 2 - 2\widetilde{w} + \widetilde{w}$

$$\|\widetilde{\boldsymbol{w}}_L - \widetilde{\boldsymbol{w}}_R\|^2 = 2 - 2\widetilde{\boldsymbol{w}}_L \cdot \widetilde{\boldsymbol{w}}_R$$

Normalization

Distance Metrics

Stereo Results

Images courtesy of Point Grey Research

Disparity Map

Problems with Window-Based Matching

- Disparity within the window may not be constant
- Blur across depth discontinuities
- Poor performance in textureless regions
- Erroneous results in occluded regions

Window Size

W = 3

W = 20

- The results depend on the window size
- Some approaches have been developed to use an adaptive window size (try multiple sizes and select best match)

Certainty Modeling

Compute certainty map from correlations

ap certainty map

input

depth map

[Szeliski, 1991]

Hierarchical Stereo Matching

(Gaussian pyramid Downsampling

Allows faster computation

Deals with large disparity ranges

Disparity propagation

(Falkenhagen '97; Van Meerbergen, Vergauwen, Pollefeys, VanGool IJCV '02)