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Digital Processing of Continuous-Time Signals

• Digital processing of a CT signal involves three basic 

steps

1. Conversion of the CT signal into a DT signal

2. Processing of the DT signal

3. Conversion of the processed DT signal back into a CT signal
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Sampling



Sampling
• Sampling is a procedure to 

extract a DT signal from a 

CT signals

• (b), (c), (d) are obtained by 

sampling (a)

• Is (b) enough to represent 

(a)?

• What is the adequate 

sampling rate to represent 

a given CT signal without 

information loss?



In general, DT signal cannot represent CT signal 

perfectly

Are these sample enough to reconstruct the original blue curve?



Continuous-Time Fourier Transform

• CTFT Formulae

– Forward transform

𝑋 𝑗Ω = න
−∞

∞

𝑥 𝑡 𝑒−𝑗Ω𝑡𝑑𝑡

– Inverse transform

𝑥 𝑡 =
1

2𝜋
න
−∞

∞

𝑋(𝑗Ω)𝑒𝑗Ω𝑡𝑑Ω

• We will use a number of properties of CTFT 

without proofs

– They are studied in the course Signals and Systems



Periodic Sampling

• C/D (continuous-time to discrete-time) converter

• 𝑥 𝑛 = 𝑥𝑐 𝑛𝑇 , −∞ < 𝑛 < ∞.

– 𝑇 : sampling period

– Ω𝑠 =
2𝜋

𝑇
(or 𝑓𝑠 =

1

𝑇
) : sampling frequency



Periodic Sampling

• Conceptually, it is easier to 

introduce an impulse train 

for the C/D conversion

• 𝑠 𝑡 = σ𝑛=−∞
∞ 𝛿(𝑡 − 𝑛𝑇)

• 𝑥𝑠 𝑡 = 𝑥𝑐 𝑡 𝑠 𝑡 =

σ𝑛=−∞
∞ 𝑥𝑐 𝑛𝑇 𝛿 𝑡 − 𝑛𝑇

• 𝑥𝑠 𝑡 and 𝑥 𝑛 have the same 

information

– Given 𝑥𝑠 𝑡 , we can make 𝑥 𝑛 .

– Given 𝑥 𝑛 , we can make 𝑥𝑠(𝑡). 





Frequency-Domain Representation 

of Sampling

• 𝑆 𝑗Ω =
2𝜋

𝑇
σ𝑘=−∞
∞ 𝛿(Ω − 𝑘Ω𝑠)

• 𝑋𝑠 𝑗Ω =
1

2𝜋
𝑋𝑐 𝑗Ω ∗ 𝑆 𝑗Ω =

=
1

𝑇
σ𝑘=−∞
∞ 𝑋𝑐(𝑗(Ω − 𝑘Ω𝑠))



Recovery of 𝑥𝑐 𝑡 from 𝑥𝑠 𝑡

• If you can recover 𝑥𝑐 𝑡 from 𝑥𝑠 𝑡 ,
you can recover 𝑥𝑐 𝑡 from 𝑥 𝑛 .

• Recovery is possible through an ideal 

low-pass filter when Ω𝑠 > 2Ω𝑁.



Nyquist-Shannon Sampling Theorem

Let 𝑥𝑐 𝑡 be a band-limited signal with 

𝑋𝑐 𝑗Ω = 0 for Ω ≥ Ω𝑁.

Then 𝑥𝑐 𝑡 is uniquely determined by its samples 𝑥 𝑛 =

𝑥𝑐 𝑛𝑇 , −∞ < 𝑛 < ∞, if

Ω𝑠 =
2𝜋

𝑇
≥ 2Ω𝑁.

• 2Ω𝑁 is called the Nyquist rate. 
• Under certain conditions, a CT signal can be completely 

represented by and recoverable from samples 
• A low-pass signal can be reconstructed from samples, if the 

sampling rate is high enough. Because it is a low-pass signal, the 
change between two close samples is constrained (or expected).



Recovery of 𝑥𝑐 𝑡 from 𝑥𝑠 𝑡

• ℎ𝑟 𝑡 =
sin(

𝜋𝑡

𝑇
)

𝜋𝑡

𝑇

• 𝑥𝑠 𝑡 = σ𝑛=−∞
∞ 𝑥[𝑛]𝛿 𝑡 − 𝑛𝑇

• 𝑥𝑟 𝑡 = σ𝑛=−∞
∞ 𝑥[𝑛]

sin(
𝜋(𝑡−𝑛𝑇)

𝑇
)

𝜋(𝑡−𝑛𝑇)

𝑇



Recovery of 𝑥𝑐 𝑡 from 𝑥[𝑛]

𝑥𝑟 𝑡 = ෍

𝑛=−∞

∞

𝑥[𝑛]
sin(

𝜋(𝑡 − 𝑛𝑇)
𝑇

)

𝜋(𝑡 − 𝑛𝑇)
𝑇



Summary



• 𝑠 𝑡 = σ𝑛=−∞
∞ 𝛿(𝑡 − 𝑛𝑇) , 𝑥𝑠 𝑡 = 𝑥𝑐 𝑡 𝑠 𝑡

• 𝑋𝑠 𝑗Ω =
1

𝑇
σ𝑘=−∞
∞ 𝑋𝑐(𝑗(Ω − 𝑘Ω𝑠))

• 𝑋𝑟 𝑗Ω = 𝑋𝑠 𝑗Ω 𝐻𝑟 𝑗Ω , 𝑥𝑟 𝑡 = σ𝑛=−∞
∞ 𝑥[𝑛]

sin(
𝜋(𝑡−𝑛𝑇)

𝑇
)

𝜋(𝑡−𝑛𝑇)

𝑇



Frequency-Domain Relationship 

between 𝑥 𝑛 and 𝑥𝑠(𝑡)

• Relationship between 𝑋 𝑒𝑗𝜔 and 𝑋𝑠 𝑗Ω

𝑋 𝑒𝑗𝜔 = 𝑋𝑠 𝑗
𝜔

𝑇

𝑋𝑠 𝑗Ω = 𝑋(𝑒𝑗Ω𝑇)

• Recall that 𝑋 𝑒𝑗𝜔 is always periodic



Aliasing



Undersampling Causes Aliasing

• Undersampling: sampling rate is less than Nyquist rate



Undersampling Causes Aliasing

• Rotating disk

– 1 rotation/second

• To avoid aliasing, it should be 

motion-pictured with at least 2 

frames/s.

0 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12



Undersampling Causes Aliasing

• 12 frames/s
0 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12



Undersampling Causes Aliasing

• 6 frames/s
0 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12



Undersampling Causes Aliasing

• 3 frames/s
0 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12



Undersampling Causes Aliasing

• 2 frames/s
0 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12



Undersampling Causes Aliasing

• 12/11 = 1.09 frames/s
0 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12



Examples

• 1 ⟷ 2𝜋𝛿(Ω)

• cos Ω0𝑡 ⟷ 𝜋(𝛿 Ω − Ω0 + 𝛿 Ω + Ω0 )

• sin Ω0𝑡 ⟷
𝜋

𝑗
(𝛿 Ω − Ω0 − 𝛿 Ω + Ω0 )

• 𝑥𝑐 𝑡 = cos 4000𝜋𝑡 , 𝑇 = 1/6000.



Examples

• 𝑥𝑐 𝑡 = cos 16000𝜋𝑡 , 𝑇 = 1/6000.



Examples



DT Processing of CT Signals



C/D and D/C conversions

• C/D

𝑋 𝑒𝑗𝜔 =
1

𝑇
෍

𝑘=−∞

∞

𝑋𝑐 𝑗
𝜔

𝑇
−
2𝜋𝑘

𝑇

• D/C

𝑌𝑟 𝑗Ω = 𝐻𝑟 𝑗Ω 𝑌 𝑒𝑗Ω𝑇 = ቐ
𝑇𝑌 𝑒𝑗Ω𝑇 , |Ω| <

𝜋

𝑇
0, Otherwise

Relationship between 

𝑥 𝑛 and 𝑥𝑠(𝑡)

𝑋 𝑒𝑗𝜔 = 𝑋𝑠 𝑗
𝜔

𝑇
,

𝑋𝑠 𝑗Ω = 𝑋(𝑒𝑗Ω𝑇)



Overall System

• Effective Frequency Response

𝐻eff 𝑗Ω = ቐ
𝐻 𝑒𝑗Ω𝑇 , |Ω| <

𝜋

𝑇
0, Otherwise

• Assumptions

– 𝑥𝑐 𝑡 is band-limited

–
2𝜋

𝑇
satisfies the Nyquist rate

Relationship between 

𝑥 𝑛 and 𝑥𝑠(𝑡)

𝑋 𝑒𝑗𝜔 = 𝑋𝑠 𝑗
𝜔

𝑇
,

𝑋𝑠 𝑗Ω = 𝑋(𝑒𝑗Ω𝑇)



Example 1

• 𝐻(𝑒𝑗𝜔) = ቊ
1, |𝜔| < 𝜔𝑐
0, 𝜔𝑐 < |𝜔| < 𝜋



Example 2

• 𝑦𝑐 𝑡 =
𝑑

𝑑𝑡
𝑥𝑐 𝑡

⇒ ℎ 𝑛 = ቐ

0, 𝑛 = 0
−1 𝑛

𝑛𝑇
, 𝑛 ≠ 0



Impulse Invariance

• ℎ 𝑛 = 𝑇ℎ𝑐 𝑛𝑇

• Example

– Ideal lowpass filter ℎ 𝑛 with 

cutoff frequency 𝜔𝑐



CT Processing of DT Signals



CT Processing of DT Signals

• It is rarely used, but provides a useful 

interpretation of some DT systems

• Main results

𝐻 𝑒𝑗𝜔 = 𝐻𝑐 𝑗
𝜔

𝑇
, |𝜔| < 𝜋

𝐻𝑐 𝑗Ω = 𝐻 𝑒𝑗Ω𝑇 , |Ω| <
𝜋

𝑇
.



Example – Fractional Delay

• 𝐻 𝑒𝑗𝜔 = 𝑒−𝑗𝜔Δ, |𝜔| < 𝜋

⟹ ℎ 𝑛 =
sin 𝜋 𝑛 − Δ

𝜋 𝑛 − Δ



Changing Sampling Rate



Reducing Sampling Rate 

by an Integer Factor 𝑀

• Time domain

𝑥𝑑 𝑛 = 𝑥 𝑛𝑀

• Frequency domain

𝑋𝑑 𝑒𝑗𝜔 =
1

𝑀
෍

𝑘=0

𝑀−1

𝑋(𝑒
𝑗
𝜔
𝑀
−
2𝜋𝑘
𝑀 )

sampling rate 
compressor



Reducing Sampling Rate 

by an Integer Factor 𝑀

• To avoid aliasing, we need

– 𝑋 𝑒𝑗𝜔 = 0 if 𝜔𝑁< |𝜔| < 𝜋

– 𝜔𝑁 <
𝜋

𝑀

• Anti-aliasing filter can be used



Increasing Sampling Rate 

by an Integer Factor 𝐿

• Input and output

𝑥 𝑛 = 𝑥𝑐 𝑛𝑇

𝑥𝑖 𝑛 = 𝑥𝑐 𝑛
𝑇

𝐿

• Intermediate signal

𝑥𝑒 𝑛 = ቐ
𝑥[
𝑛

𝐿
] if 𝑛 is a multiple of 𝐿

0 otherwise

• Output in terms of input

𝑥𝑖 𝑛 = ෍

𝑘=−∞

∞

𝑥[𝑘]
sin

𝜋(𝑛 − 𝑘𝐿)
𝐿

𝜋(𝑛 − 𝑘𝐿)
𝐿

sampling rate 
expander



Ideal and Linear Interpolation Filters

• 𝑥𝑒 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 𝛿[𝑛 − 𝑘𝐿]

• 𝑥𝑖 𝑛 = 𝑥𝑒 𝑛 ∗ ℎ𝑖[𝑛] =σ𝑘=−∞
∞ 𝑥 𝑘 ℎ𝑖[𝑛 − 𝑘𝐿]

• Ideal filter

ℎ𝑖 𝑛 =
sin

𝜋𝑛
𝐿

𝜋𝑛
𝐿

• Linear filter

ℎlin 𝑛 = ቐ1 −
𝑛

𝐿
, −𝐿 ≤ 𝑛 ≤ 𝐿

0, otherwise



Changing Sampling Rate 

by a Noninteger Factor


