Geometric Order Learning for Rank Estimation

Seon-Ho Lee, Nyeong-Ho Shin, Chang-Su Kim

NeurIPS 2022

Order Learning (순서학습)

- Related Work
 - [ICLR 2020] Order Learning and Its Application to Age Estimation
 - [ICLR 2021] Deep Repulsive Clustering of Ordered Data Based on Order-Identity Decomposition
 - [CVPR 2022] Moving Window Regression: A Novel Approach to Ordinal Regression
 - [ECCV 2022] Order Learning Using Partially Ordered Data via Chainization
 - [NeurIPS 2022] Geometric Order Learning for Rank Estimation

[ICLR 2020] Order Learning and Its Application to Age Estimation

Rank Estimation

- Estimate the rank of an object instance
 - Depth
 - Aesthetic score
 - Facial age

How far the region is?

How beautiful the image is?

How old is she?

Direct Estimation is Difficult

Rank estimation via relative assessment

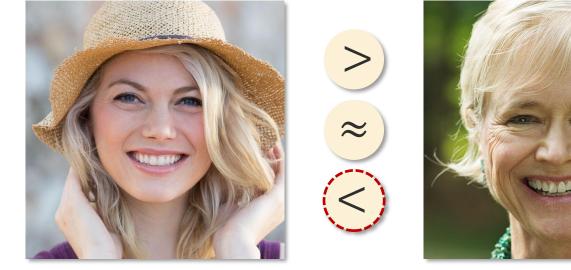
Rank estimation via relative assessment

target

 \approx

reference

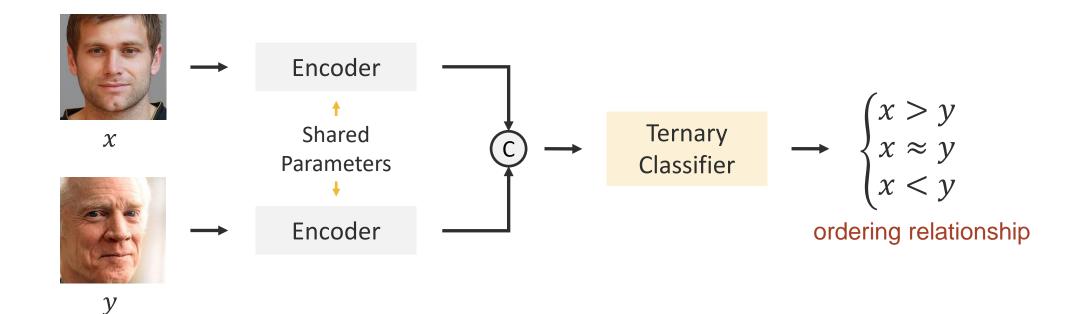
Rank estimation via relative assessment


target

reference

Rank estimation via relative assessment

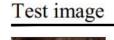
target



reference

Pairwise Comparator

It consists of a Siamese network and a ternary classifier



Age Estimation Example

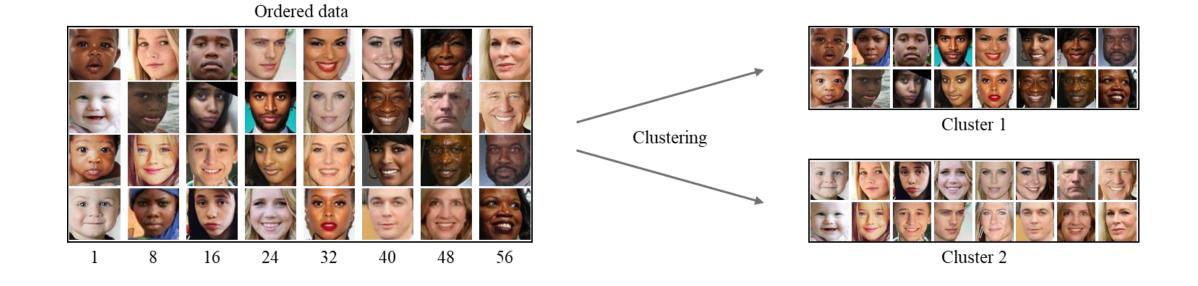
- Test image : *x*
- Reference image : y

22 Male Asian

[ICLR 2021] Deep Repulsive Clustering of Ordered Data Based on Order-Identity Decomposition

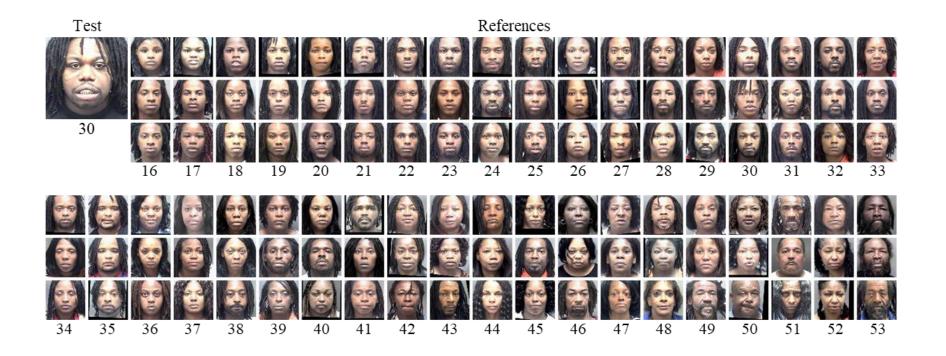
Order-Identity Decomposition

- Order feature : order related information
- Identity feature : characteristics unrelated to ranks

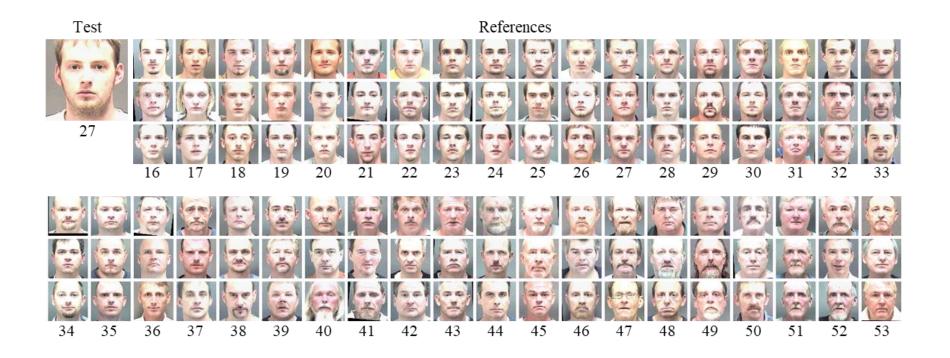


Order feature : skin texture, wrinkles, ...

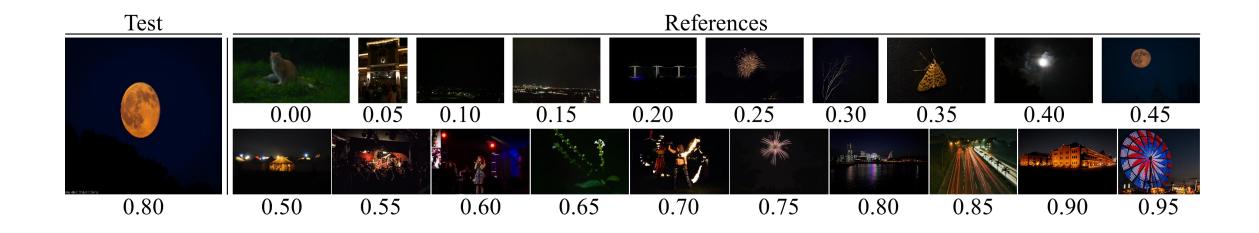
Identity feature : race, gender, ...



Clustering of Ordered Data

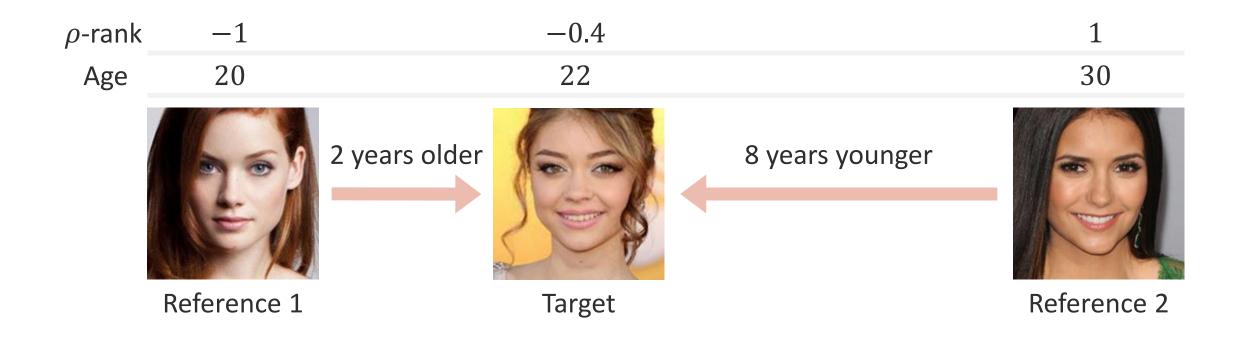


Reference Selection Based on Identity Feature

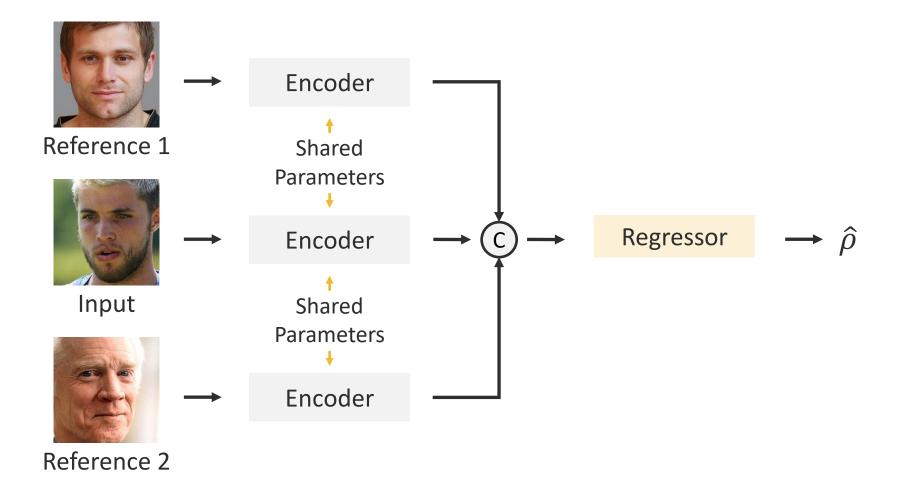


Reference Selection Based on Identity Feature

Reference Selection Based on Identity Feature


Moving Window Regression

[CVPR 2022] Moving Window Regression: A Novel Approach to Ordinal Regression


ρ -rank

• How much greater or smaller the input is than the references

ρ-regressor

CVPR 2022

Moving Window Regression: A Novel Approach to Ordinal Regression Nyeong-Ho Shin, Seon-Ho Lee, Chang-Su Kim

Age Estimation Results

■ MORPH II & FG-NET

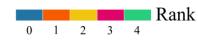
	Setting A		Sett	Setting B		Setting C		Setting D		FG-NET	
	MAE	CS (%)	MAE	CS (%)							
MV	-	-	-	-	2.79	-	2.16	-	-	-	
BridgeNet	2.38	91.0	2.63	86.0	-	-	-	-	2.56	<u>86.0</u>	
AVDL	2.37	-	<u>2.53</u>	-	-	-	1.94	-	2.32	-	
OL	2.41	91.7	2.75	88.2	2.68	88.8	2.22	93.3	-	-	
DRC-ORID	<u>2.26</u>	<u>93.8</u>	2.51	<u>89.7</u>	<u>2.58</u>	<u>89.5</u>	2.16	<u>93.5</u>	-	-	
MWR	2.13	94.2	<u>2.53</u>	90.4	2.53	90.5	<u>2.00</u>	95.0	2.23	91.1	

GOL

[NeurIPS 2022] Geometric Order Learning for Rank Estimation

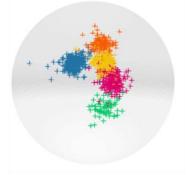
Rank Estimation Methods

- Ordinal regression
 - Predict the rank of an object directly via a regressor or a classifier
- Comparison based approaches
 - Metric learning
 - How different *x* is from *y*
 - Order learning
 - *x* is greater than *y*
 - x is similar to y
 - x is smaller than y



Rank Estimation Methods

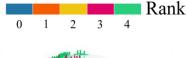
- Ordinal regression
 - Predict the rank of an object directly via a regressor or a classifier
- Comparison-based approaches
 - Metric learning
 - How different *x* is from *y*


Order learning

- x is greater than y
- x is similar to y
- x is smaller than y

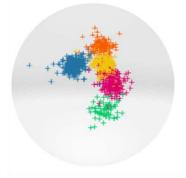
(a) Order learning ignores metric information

(b) Metric learning not fully exploit the order of objects



Rank Estimation Methods

- Ordinal regression
 - Predict the rank of an object directly via a regressor or a classifier
- Comparison-based approaches
 - • Metric learning
 - How different *x* is from *y*


GOL - Order learning

- *x* is greater than *y*
- *x* is similar to *y*
- x is smaller than y

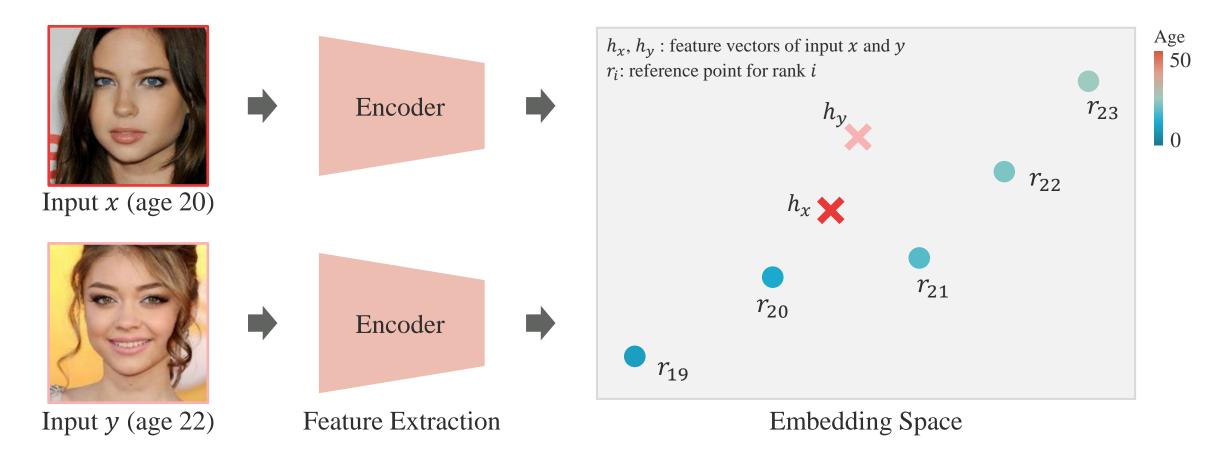
(a) Order learning

(b) Metric learning

(c) GOL

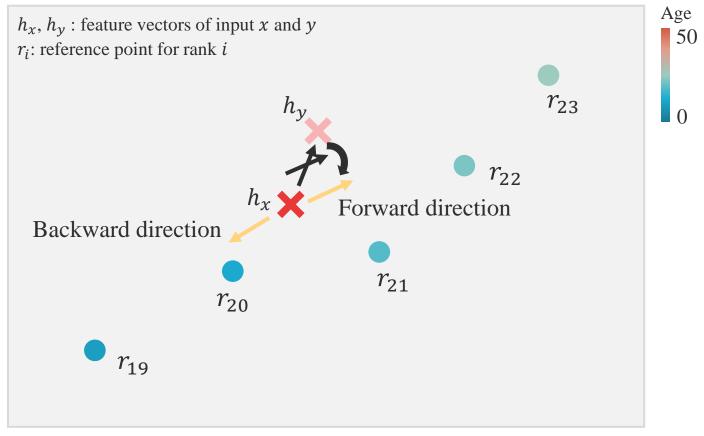
GOL

Order constraint


sorts instances directionally according to the ranks

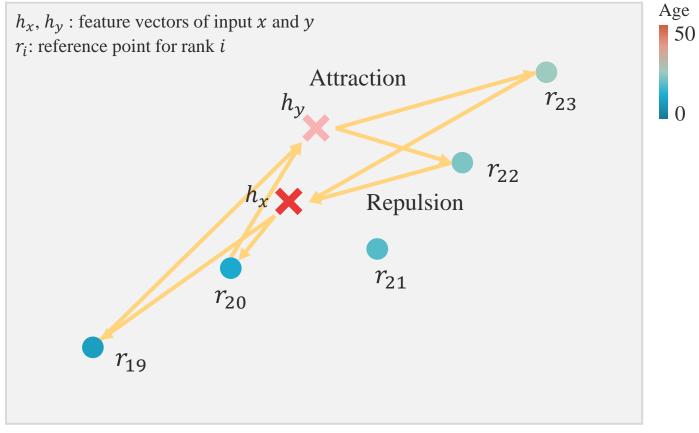
Metric constraint

- separates two instances farther if their rank difference is larger


Feature Extraction

Encode object instances into an embedding space

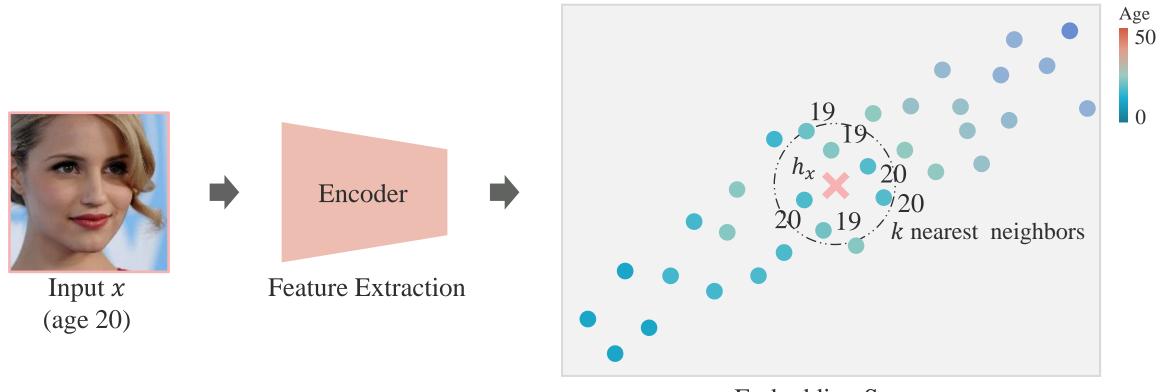
Order Constraint



Embedding Space

• Arrange instances according to their rank directions

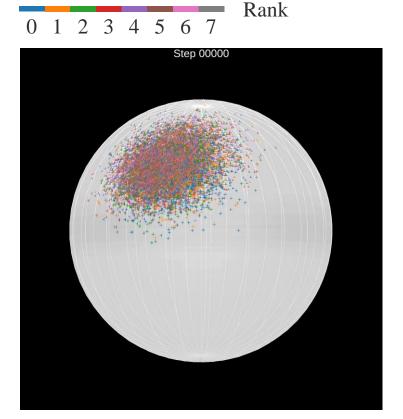
Metric Constraint



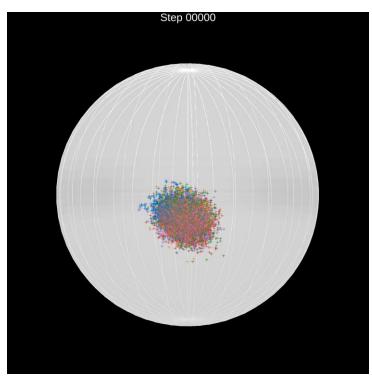
Embedding Space

• Make the distance between instances reflect their rank difference

k-NN Estimation



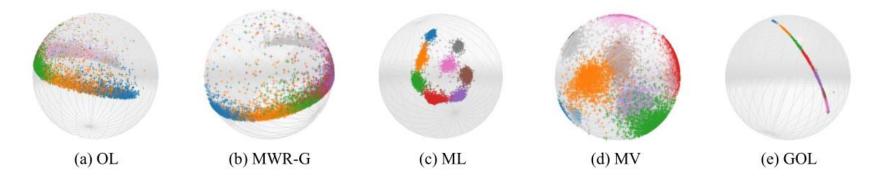
Embedding Space


• Estimate the rank of a test instance by finding the nearest neighbors


Transition of Embedding Spaces

Order Learning

Metric Learning



GOL

Embedding Space Evaluation

	MORPH II (setting A)			CACD (validation split)			Adience			
Algorithm	B2W	DRR _{1.0}	DRR _{0.5}	B2W	DRR _{1.0}	DRR _{0.5}	B2W	$DRR_{1.0}$	DRR _{0.5}	
ML (Schroff et al., 2015)	41.20	10.06	8.94	3.90	2.89	2.55	5.12	3.21	2.98	
MV (Pan et al., 2018)	72.47	10.37	9.80	24.21	6.23	5.84	7.08	3.29	3.24	
OL (Lim et al., 2020)	43.94	12.79	11.44	8.77	5.60	4.86	13.29	7.27	6.53	
MWR-G (Shin et al., 2022)	30.42	10.66	9.28	9.99	6.00	5.24	7.84	5.20	4.71	
Proposed GOL	292.72	29.40	25.77	53.06	12.59	10.82	70.31	32.09	28.37	

Age Estimation

	Setting A		Sett	ting B	Sett	ing C	Setting D	
Algorithm	MAE	CS (%)	MAE	CS (%)	MAE	CS (%)	MAE	CS (%)
DRFs (Shen et al., 2018)	2.91	82.9	2.98	-	-	-	2.17	91.3
MV (Pan et al., 2018)*	-	-	-	-	2.79	-	2.16	-
C3AE (Chao et al., 2019)*	-	-	-	-	-	-	2.75	-
BridgeNet (Li et al., 2019)*	2.38	91.0	2.63	86.0	-	-	-	-
AVDL (Wen et al., 2020)*	2.37	-	2.53	-	-	-	1.94	-
OL (Lim et al., 2020)*	2.41	91.7	2.75	88.2	2.68	88.8	2.22	93.3
DRC-ORID (Lee & Kim, 2021)*	2.26	93.8	2.51	<u>89.7</u>	2.58	<u>89.5</u>	2.16	<u>93.5</u>
MWR-G (Shin et al., 2022)*	<u>2.24</u>	<u>93.5</u>	2.55	90.1	2.61	89.5	2.16	93.0
Proposed GOL	2.17	93.8	2.60	89.3	2.51	90.0	<u>2.09</u>	94.2

Aesthetic Score Estimation

	Nature		Animal		Urban		People		Overall	
Algorithm	Acc.	MAE	Acc.	MAE	Acc.	MAE	Acc.	MAE	Acc.	MAE
CNNm (Liu et al., 2018)	71.0	0.31	68.0	0.34	68.2	0.36	71.6	0.32	69.5	0.33
CNNPOR (Liu et al., 2018)	71.9	0.29	69.3	0.32	69.1	0.33	69.9	0.32	70.1	0.32
SORD (Diaz & Marathe, 2019)	73.6	0.27	70.3	0.31	73.3	0.28	70.6	0.31	72.0	0.29
POE (Li et al., 2021)	73.6	0.27	71.1	0.30	72.8	0.28	72.2	0.29	72.4	0.29
Proposed GOL	73.8	0.27	72.4	0.28	74.2	0.26	69.6	0.31	72.7	0.28

- New concept
- Applicable to most ranking, assessment, diagnosis problems
 - Cancer stage classification
 - Smart farm fruit quality assessment
 - Recommendation systems

Q & A

• 감사합니다.

