
KECE471 Computer Vision

Binary Image Analysis

Chang-Su Kim

Chapter 3, Computer Vision by Shapiro and Stockman
Chapter 3, Computer Vision by Szeliski

Binary Images

• Binary image B

• B[r, c]: binary value of the pixel at row r

and column c

– B[r, c] = 1 : [r, c] is a foreground (or black) pixel

– B[r, c] = 0 : [r, c] is a background (or white)

pixel

Neighborhoods

• 4-neighborhood 𝑁4
– {𝐴, 𝐵, 𝐶, 𝐷} is the 4-neighborhood

of 𝑋

– 𝐴 neighbors 𝑋 in the context of

4-neighborhood

• 8-neighborhood 𝑁8
– {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻} is the 8-

neighborhood of 𝑋

– 𝐶 or 𝐹 neighbors 𝑋 in the context

of 8-neighborhood

𝐴

𝐵 𝑋

𝐷

𝐶

𝐸 𝐴 𝐹

𝐵

𝐺

𝑋

𝐷

𝐶

𝐻

Applying Masks to Images

• It is like convolution

• For each pixel in the input image

– Place the mask on top of the image with its origin

lying on the pixel

– Multiply the value of each input image pixel under the

mask by the weight of the corresponding mask pixel,

and then add those products together

– Put the sum into the output image at the location of

the input pixel being processed

Applying Masks to Images

Ex)

Counting Objects in an Image

How many objects are there?

Internal Corners

Counting Objects in an Image

External Corners

• How can a computer count them?

• One approach is using the corner patterns

Counting Objects in an Image

There are 11 external corners (E = 11)

1 2

3 4 5

6

7 8 9

10 11

Counting Objects in an Image

There are three internal corners (I = 3)

1

2

3

Counting Objects in an Image

• In an object, E – I = 4

– This is obvious for a rectangle (E = 4, I = 0)

– When you remove or paste a black pixel, it does
not change the difference

• The formula does not hold if

– different objects share a vertex or

– objects contains holes

of objects = (E – I)/4

of objects = (E – I)/4

Internal Corners

External Corners

Sketch of Proof

Counting Objects in an Image

Counting Objects in an Image

Counting Objects in an Image

Counting Objects in an Image

Counting Objects in an Image

You need four more right turns than left turns to make a round trip.

Spectacle

Creators vs Spectators

Connectedness

• A pixel [𝑟, 𝑐] is connected to another pixel [𝑟’, 𝑐’]with

respect to value 𝑣

– if there is a sequence of pixels

[𝑟, 𝑐] = [𝑟0, 𝑐0], [𝑟1, 𝑐1], … , [𝑟𝑛, 𝑐𝑛] = [𝑟’, 𝑐’] (1)

such that

𝑩[𝑟𝑖, 𝑐𝑖] = 𝑣 for all 0 ≤ 𝑖 ≤ 𝑛 and

[𝑟𝑖, 𝑐𝑖] neighbors [𝑟𝑖−1, 𝑐𝑖−1] for all 1 ≤ 𝑖 ≤ 𝑛

• The sequence in (1) is called a path from [𝑟, 𝑐] to [𝑟’, 𝑐’]

• A connected component is a maximum set of pixels, such

that every pair of pixels in the set are connected.

Note: all definitions can be made in terms of the 4-

neighborhood or 8-neighborhood.

Connectedness

𝐴

𝐶

𝐹

𝐵

𝐷

𝐺

𝐸

𝐻

𝐽 𝐾

𝐼

𝐿 𝑀

• 4-neighborhood
– 𝐴 and 𝐻 are connected

– 𝐴 and 𝐾 are not connected

– (𝐴, 𝐷, 𝐻) is a path from 𝐴 to 𝐻
– {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻} is a

connected component

• 8-neighborhood
– 𝐴 and 𝐻 are connected

– 𝐴 and 𝐾 are connected

– (𝐴, 𝐷, 𝐻, 𝐽, 𝐾) is a path from 𝐴
to 𝐾

– {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻} is not a
connected component

Connected Components Labeling

• A connected components labeling of a

binary image 𝑩 is a labeled image 𝑳 in

which the value of each foreground pixel is

the label of its connected component

– background pixels are assigned 0

0

0 0

0

0 0

0
0
0
0

0

0
0
0
0
0

0 0 0 0 0 0
0 0 0 0

B L

Connected Components Labeling

• A connected components labeling of a

binary image B is a labeled image L in

which the value of each foreground pixel is

the label of its connected component

– background pixels are assigned 0

1 1 0 1 1
1
1
0

1
1
0

0
1
0

1
1
0

0
0
0

4 4 4 4 0

1 0
1
0
3

0
0
0

3 0

2
2

2
2

0 0 0 4 0 0 0 2

2

0 0 0 4 0 2 2 2

𝑩 𝑳

Connected Components Labeling

• Two algorithms

– Recursive labeling

• Random access to the whole image is possible

– Row-by-row labeling

• Image is big and processed in row-by-row manner

• Only two rows are processed at a time

• Self-study

Recursive Labeling

void recurisve_labeling(B, L)

{

L = negate(B); // 1 -> -1

label = 0;

find_components(L, label);

print(L);

}

void find_components(L, label)

{

for(r=0 to MaxR) for(c=0 to MaxC)

if(L(r, c) == -1){

label++;

search(L, label, r, c)

}

}

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

1

1

1

1

1

1

1

1

1

1

1

Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’); // recursion

}

}

-1

1

-1

-1

-1

-1

-1

-1

-1

-1

-1

r=1, c=2, label =1

Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’); // recursion

}

}

-1

1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Nset contains
north, west, east, south pixels
in that order

Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’); // recursion

}

}

-1

1

1

-1

-1

-1

-1

-1

-1

-1

-1

Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’); // recursion

}

}

1

1

1

-1

-1

-1

-1

-1

-1

-1

-1

Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’); // recursion

}

}

1

1

1

-1

1

-1

-1

-1

-1

-1

-1

Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’); // recursion

}

}

1

1

1

-1

1

1

-1

-1

-1

-1

-1

Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’); // recursion

}

}

1

1

1

1

1

1

-1

-1

-1

-1

-1

Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’); // recursion

}

}

1

1

1

1

1

1

1

-1

-1

-1

-1

Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’); // recursion

}

}

1

1

1

1

1

1

1

-1

2

-1

-1

Review of Recursion

int FiboR (int n)

{

if(n<=1) return 1;

else

return FiboR(n-1)+FiboR(n-2);

}

O(2n)

int FiboD (int n)

{

if(n<=1) return 1;

else{

int *temp = new int[n+1];

temp[0] = temp[1] = 1;

for(int i=2; i<=n; i++)

temp[i] = temp[i-1]+temp[i-2];

int result = temp[n];

delete temp;

return result;

}

}

O(n)

Binary Image Morphology

• Structuring elements

– One pixel is denoted as

its origin

• Basic operations

– Translation

– Dilation

– Erosion

– Closing

– Opening

1

1 1

1

1

1 1

1

1

1

1

1

1

Ex) Structuring elements with their
origins

Translation

• The translation 𝐗t of a set of pixels 𝐗 by a position vector t

𝐗t = {x + t|x ∈ 𝐗}

– In this and following definitions, sets contain the coordinates of 1

(black) pixels

𝐗 𝐗t

What is t?

Dilation

• The dilation of a binary image 𝐁 by a structuring element 𝐒

𝐁⊕ 𝐒 =ራ

b∈𝐁

𝐒b

– The structuring element is put over each black pixel in 𝐁

– All the black pixels compose the dilation result.

𝐁 𝐒 𝐁⊕ 𝐒

Dilation

𝐁 𝐒 𝐁⊕ 𝐒

• The dilation of a binary image 𝐁 by a structuring element 𝐒

𝐁⊕ 𝐒 =ራ

b∈𝐁

𝐒b

– The structuring element is put over each black pixel in 𝐁

– All the black pixels compose the dilation result.

Erosion

• The erosion of a binary image 𝐁 by a structuring element 𝐒

𝐁⊝ 𝐒 = {t|𝐒t ⊂ 𝐁}

– If the translated 𝐒t is wholly contained in 𝐁, t is set black

in the erosion result

𝐁⊝ 𝐒𝐒𝐁

Erosion

𝐁⊝ 𝐒𝐒𝐁

• The erosion of a binary image 𝐁 by a structuring element 𝐒

𝐁⊝ 𝐒 = {t|𝐒t ⊂ 𝐁}

– If the translated 𝐒t is wholly contained in 𝐁, t is set black

in the erosion result

Closing

• The closing of a binary image 𝐁 by a structuring element 𝐒

𝐁⦁𝐒 = (𝐁⊕ 𝐒)⊖ 𝐒

𝐒𝐁 𝐁⊕ 𝐒

Closing

𝐒𝐁 𝐁⦁𝐒

• The closing of a binary image 𝐁 by a structuring element 𝐒

𝐁⦁𝐒 = (𝐁⊕ 𝐒)⊖ 𝐒

Closing

• The closing of a binary image 𝐁 by a structuring element 𝐒

𝐁⦁𝐒 = (𝐁⊕ 𝐒)⊖ 𝐒

– Ignoring boundary effects, the closing makes the input bigger

– The closing fills tiny gaps in the input image

𝐒𝐁 𝐁⦁𝐒

Opening

• The opening of a binary image 𝐁 by a structuring element 𝐒

𝐁 ∘ 𝐒 = (𝐁⊖ 𝐒)⊕ 𝐒

𝐁⊝ 𝐒𝐒𝐁

Opening

• The opening of a binary image 𝐁 by a structuring element 𝐒

𝐁 ∘ 𝐒 = (𝐁⊖ 𝐒)⊕ 𝐒

– The opening makes the input smaller

– The opening erases tiny components or thin extrusions

𝐁 ∘ 𝐒𝐒𝐁

Application: Gear-Tooth Inspection

• B7

– Open B3 to remove

the teeth (B4)

– Dilate B4 to make it

larger (B5)

– Dilate B5 to make it

even larger (B6)

– B7 = B6 – B5

Region Properties

• Let R denote a region or the set of its pixel

coordinates

• Area

• Centroid

(,)

1
r c R

A


= 

(,)r c

(,) (,)

1 1
 and

r c R r c R

r r c c
A A 

= = 
Area = 10
Centroid = (2.6, 3.4)

Region Properties

• Perimeter

– 4-connected perimeter

– 8-connected perimeter

4 8{(,) | (,) }P r c R N r c R =  − 

8 4{(,) | (,) }P r c R N r c R =  − 

R P4 P8

Region Properties

• Perimeter length

R P4 P8

Length = 18 Length = 8 5 2 15.07+ =

Region Properties

• Haralick’s circularity measure

– (rk, ck): border pixels on the perimeter

– K: the number of border pixels

– C is bigger as the region is more circular

1

0

1/ 2
21

0

1
(,) (,)

1
(,) (,)

K

k k

k

K

k k

k

C

r c r c
K

r c r c
K







−

=

−

=

=

−

=
 

 − −   
 





Region Properties

• Spatial moments

– Second-order row moment

– Second-order column moment

– Second-order mixed moment

2

(,)

1
()rr

r c R

r r
A




= −

2

(,)

1
()cc

r c R

c c
A




= −

(,)

1
()()rc

r c R

r r c c
A




= − −

Region Adjacency Graph (RAG)

• Two regions A and B are adjacent if a pixel in A

neighbors a pixel in B

• In RAG, each node represents a region of the

image, and an edge connects two nodes if the

corresponding regions are adjacent

Distance Transform

• Chamfer matching (binary shape matching)

Scene Image Feature Image Distance Image

correlation

Matching Result

Template

Each pixel value denotes the distance to the nearest feature pixel

DT allows more variability between a template and an object of interest in
the image because a distance image provides a smooth cost function.

D. M. Gavrila, “A Bayesian, exemplar-based approach to hierarchical shape matching,”
IEEE Trans. Pattern Anal. Mach. Intell., Vol.29, No.8, pp.1408-1421, 2007.

Distance Transform

• Distance between 𝑝 = 𝑥1, 𝑦1 and 𝑞 = 𝑥2, 𝑦2
– Manhattan distance

𝑑1 𝑝, 𝑞 = 𝑥1 − 𝑥2 + 𝑦1 − 𝑦2
– Euclidean distance

𝑑2 𝑝, 𝑞 = 𝑥1 − 𝑥2
2 + 𝑦1 − 𝑦2

2

• We use 𝑑1 in this application

• Distance transform

– For 𝑝 with 𝐁(𝑝) = 1

𝐷 𝑝 = min
𝐁 𝑞 =0

𝑑1(𝑞, 𝑝)

– Compute the distance to the nearest background pixel

Distance Transform

• Example

Distance Transform

• Procedure: Two sweeps for nonzero pixels

only

– (b) forward sweep

𝐷 𝑟, 𝑐 = min{1 + 𝐷 𝑟 − 1, 𝑐 , 1 + 𝐷 𝑟, 𝑐 − 1 }

– (c) backward sweep

𝐷 𝑟, 𝑐 = min{𝐷 𝑟, 𝑐 , 1 + 𝐷 𝑟 + 1, 𝑐 , 1 + 𝐷 𝑟, 𝑐 + 1 }

Thresholding Gray-Scale Images to

Make Binary Images

• The histogram h

of an image I is a

function, given

by

– h(m) = the

number of pixels

in I which have

value m

Thresholding Gray-Scale Images to

Make Binary Images

m

h

foregroundbackground

	슬라이드 1: KECE471 Computer Vision Binary Image Analysis
	슬라이드 2: Binary Images
	슬라이드 3: Neighborhoods
	슬라이드 4: Applying Masks to Images
	슬라이드 5: Applying Masks to Images
	슬라이드 6: Counting Objects in an Image
	슬라이드 7: Counting Objects in an Image
	슬라이드 8: Counting Objects in an Image
	슬라이드 9: Counting Objects in an Image
	슬라이드 10: Counting Objects in an Image
	슬라이드 11: Sketch of Proof
	슬라이드 12: Counting Objects in an Image
	슬라이드 13: Counting Objects in an Image
	슬라이드 14: Counting Objects in an Image
	슬라이드 15: Counting Objects in an Image
	슬라이드 16: Counting Objects in an Image
	슬라이드 17: Spectacle
	슬라이드 18: Creators vs Spectators
	슬라이드 19: Connectedness
	슬라이드 20: Connectedness
	슬라이드 21: Connected Components Labeling
	슬라이드 22: Connected Components Labeling
	슬라이드 23: Connected Components Labeling
	슬라이드 24: Recursive Labeling
	슬라이드 25: Recursive Labeling
	슬라이드 26: Recursive Labeling
	슬라이드 27: Recursive Labeling
	슬라이드 28: Recursive Labeling
	슬라이드 29: Recursive Labeling
	슬라이드 30: Recursive Labeling
	슬라이드 31: Recursive Labeling
	슬라이드 32: Recursive Labeling
	슬라이드 33: Recursive Labeling
	슬라이드 34: Review of Recursion
	슬라이드 35
	슬라이드 36: Binary Image Morphology
	슬라이드 37: Translation
	슬라이드 38: Dilation
	슬라이드 39: Dilation
	슬라이드 40: Erosion
	슬라이드 41: Erosion
	슬라이드 42: Closing
	슬라이드 43: Closing
	슬라이드 44: Closing
	슬라이드 45: Opening
	슬라이드 46: Opening
	슬라이드 47: Application: Gear-Tooth Inspection
	슬라이드 48: Region Properties
	슬라이드 49: Region Properties
	슬라이드 50: Region Properties
	슬라이드 51: Region Properties
	슬라이드 52: Region Properties
	슬라이드 53: Region Adjacency Graph (RAG)
	슬라이드 54: Distance Transform
	슬라이드 55: Distance Transform
	슬라이드 56: Distance Transform
	슬라이드 57: Distance Transform
	슬라이드 58: Thresholding Gray-Scale Images to Make Binary Images
	슬라이드 59: Thresholding Gray-Scale Images to Make Binary Images

