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Binary Images

• Binary image B

• B[r, c]: binary value of the pixel at row r 

and column c

– B[r, c] = 1 : [r, c] is a foreground (or black) pixel 

– B[r, c] = 0 : [r, c] is a background (or white) 

pixel 



Neighborhoods

• 4-neighborhood 𝑁4
– {𝐴, 𝐵, 𝐶, 𝐷} is the 4-neighborhood 

of 𝑋

– 𝐴 neighbors 𝑋 in the context of 

4-neighborhood

• 8-neighborhood 𝑁8
– {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻} is the 8-

neighborhood of 𝑋

– 𝐶 or 𝐹 neighbors 𝑋 in the context 

of 8-neighborhood
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Applying Masks to Images

• It is like convolution

• For each pixel in the input image

– Place the mask on top of the image with its origin 

lying on the pixel

– Multiply the value of each input image pixel under the 

mask by the weight of the corresponding mask pixel, 

and then add those products together

– Put the sum into the output image at the location of 

the input pixel being processed



Applying Masks to Images

Ex)



Counting Objects in an Image

How many objects are there?



Internal Corners

Counting Objects in an Image

External Corners

• How can a computer count them?

• One approach is using the corner patterns



Counting Objects in an Image

There are 11 external corners (E = 11)
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Counting Objects in an Image

There are three internal corners (I = 3)
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Counting Objects in an Image

• In an object, E – I = 4

– This is obvious for a rectangle (E = 4, I = 0)

– When you remove or paste a black pixel, it does 
not change the difference

• The formula does not hold if 

– different objects share a vertex or 

– objects contains holes

# of objects = (E – I)/4 



# of objects = (E – I)/4 

Internal Corners

External Corners

Sketch of Proof



Counting Objects in an Image



Counting Objects in an Image



Counting Objects in an Image



Counting Objects in an Image



Counting Objects in an Image

You need four more right turns than left turns to make a round trip.



Spectacle



Creators vs Spectators



Connectedness

• A pixel [𝑟, 𝑐] is connected to another pixel [𝑟’, 𝑐’]with 

respect to value 𝑣

– if there is a sequence of pixels 

[𝑟, 𝑐] = [𝑟0, 𝑐0], [𝑟1, 𝑐1], … , [𝑟𝑛, 𝑐𝑛] = [𝑟’, 𝑐’] (1)

such that 

𝑩[𝑟𝑖, 𝑐𝑖] = 𝑣 for all 0 ≤ 𝑖 ≤ 𝑛 and 

[𝑟𝑖, 𝑐𝑖] neighbors [𝑟𝑖−1, 𝑐𝑖−1] for all 1 ≤ 𝑖 ≤ 𝑛

• The sequence in (1) is called a path from [𝑟, 𝑐] to [𝑟’, 𝑐’]

• A connected component is a maximum set of pixels, such 

that every pair of pixels in the set are connected.

Note: all definitions can be made in terms of the 4-

neighborhood or 8-neighborhood.



Connectedness
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• 4-neighborhood
– 𝐴 and 𝐻 are connected

– 𝐴 and 𝐾 are not connected

– (𝐴, 𝐷, 𝐻) is a path from 𝐴 to 𝐻
– {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻} is a 

connected component

• 8-neighborhood
– 𝐴 and 𝐻 are connected

– 𝐴 and 𝐾 are connected

– (𝐴, 𝐷, 𝐻, 𝐽, 𝐾) is a path from 𝐴
to 𝐾

– {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻} is not a 
connected component



Connected Components Labeling

• A connected components labeling of a 

binary image 𝑩 is a labeled image 𝑳 in 

which the value of each foreground pixel is 

the label of its connected component

– background pixels are assigned 0

0

0 0

0

0 0

0
0
0
0

0

0
0
0
0
0

0 0 0 0 0 0
0 0 0 0

B L



Connected Components Labeling

• A connected components labeling of a 

binary image B is a labeled image L in 

which the value of each foreground pixel is 

the label of its connected component

– background pixels are assigned 0
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Connected Components Labeling

• Two algorithms

– Recursive labeling

• Random access to the whole image is possible

– Row-by-row labeling

• Image is big and processed in row-by-row manner

• Only two rows are processed at a time

• Self-study 



Recursive Labeling

void recurisve_labeling(B, L)

{

L = negate(B); // 1 -> -1

label = 0;

find_components(L, label);

print(L); 

}

void find_components(L, label)

{

for(r=0 to MaxR) for(c=0 to MaxC)

if(L(r, c) == -1){

label++;

search(L, label, r, c)

}

}
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Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c);  // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’);   // recursion

}

}
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Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c);  // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’);   // recursion

}

}
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Nset contains 
north, west, east, south pixels 
in that order



Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c);  // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’);   // recursion

}

}
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Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c);  // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’);   // recursion

}

}
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Recursive Labeling
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Recursive Labeling
void search(L, label, r, c)

{
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Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c);  // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’);   // recursion

}

}
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Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c);  // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’);   // recursion

}

}
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Recursive Labeling
void search(L, label, r, c)

{

L[r, c] = label;

Nset = neighbors(r, c);  // Nset becomes the 4-neighborhood of [r, c]

for each [r’, c’] in Nset {

if(L[r’, c’] == -1)

search(L, label, r’, c’);   // recursion

}

}
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Review of Recursion

int FiboR (int n)

{

if(n<=1) return 1;

else

return FiboR(n-1)+FiboR(n-2);

}

O(2n)

int FiboD (int n)

{

if(n<=1) return 1;

else{

int *temp = new int[n+1];

temp[0] = temp[1] = 1;

for(int i=2; i<=n; i++)

temp[i] = temp[i-1]+temp[i-2];

int result = temp[n];

delete temp;

return result;

}

}

O(n)





Binary Image Morphology

• Structuring elements

– One pixel is denoted as 

its origin

• Basic operations

– Translation

– Dilation

– Erosion

– Closing

– Opening
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Ex) Structuring elements with their 
origins



Translation

• The translation 𝐗t of a set of pixels 𝐗 by a position vector t

𝐗t = {x + t|x ∈ 𝐗}

– In this and following definitions, sets contain the coordinates of 1 

(black) pixels

𝐗 𝐗t

What is t?



Dilation

• The dilation of a binary image 𝐁 by a structuring element 𝐒

𝐁⊕ 𝐒 =ራ

b∈𝐁

𝐒b

– The structuring element is put over each black pixel in 𝐁

– All the black pixels compose the dilation result.

𝐁 𝐒 𝐁⊕ 𝐒



Dilation

𝐁 𝐒 𝐁⊕ 𝐒

• The dilation of a binary image 𝐁 by a structuring element 𝐒

𝐁⊕ 𝐒 =ራ

b∈𝐁

𝐒b

– The structuring element is put over each black pixel in 𝐁

– All the black pixels compose the dilation result.



Erosion

• The erosion of a binary image 𝐁 by a structuring element 𝐒

𝐁⊝ 𝐒 = {t|𝐒t ⊂ 𝐁}

– If the translated 𝐒t is wholly contained in 𝐁, t is set black 

in the erosion result

𝐁⊝ 𝐒𝐒𝐁



Erosion

𝐁⊝ 𝐒𝐒𝐁

• The erosion of a binary image 𝐁 by a structuring element 𝐒

𝐁⊝ 𝐒 = {t|𝐒t ⊂ 𝐁}

– If the translated 𝐒t is wholly contained in 𝐁, t is set black 

in the erosion result



Closing

• The closing of a binary image 𝐁 by a structuring element 𝐒

𝐁⦁𝐒 = (𝐁⊕ 𝐒)⊖ 𝐒

𝐒𝐁 𝐁⊕ 𝐒



Closing

𝐒𝐁 𝐁⦁𝐒

• The closing of a binary image 𝐁 by a structuring element 𝐒

𝐁⦁𝐒 = (𝐁⊕ 𝐒)⊖ 𝐒



Closing

• The closing of a binary image 𝐁 by a structuring element 𝐒

𝐁⦁𝐒 = (𝐁⊕ 𝐒)⊖ 𝐒

– Ignoring boundary effects, the closing makes the input bigger

– The closing fills tiny gaps in the input image

𝐒𝐁 𝐁⦁𝐒



Opening

• The opening of a binary image 𝐁 by a structuring element 𝐒

𝐁 ∘ 𝐒 = (𝐁⊖ 𝐒)⊕ 𝐒

𝐁⊝ 𝐒𝐒𝐁



Opening

• The opening of a binary image 𝐁 by a structuring element 𝐒

𝐁 ∘ 𝐒 = (𝐁⊖ 𝐒)⊕ 𝐒

– The opening makes the input smaller

– The opening erases tiny components or thin extrusions

𝐁 ∘ 𝐒𝐒𝐁



Application: Gear-Tooth Inspection

• B7

– Open B3 to remove 

the teeth (B4)

– Dilate B4 to make it 

larger (B5)

– Dilate B5 to make it 

even larger (B6)

– B7 = B6 – B5



Region Properties

• Let R denote a region or the set of its pixel 

coordinates

• Area

• Centroid
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Region Properties

• Perimeter

– 4-connected perimeter

– 8-connected perimeter

4 8{( , ) | ( , ) }P r c R N r c R =  − 

8 4{( , ) | ( , ) }P r c R N r c R =  − 

R P4 P8



Region Properties

• Perimeter length

R P4 P8

Length = 18 Length = 8 5 2 15.07+ =



Region Properties

• Haralick’s circularity measure

– (rk, ck): border pixels on the perimeter

– K: the number of border pixels

– C is bigger as the region is more circular
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Region Properties

• Spatial moments

– Second-order row moment

– Second-order column moment

– Second-order mixed moment
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Region Adjacency Graph (RAG)

• Two regions A and B are adjacent if a pixel in A

neighbors a pixel in B

• In RAG, each node represents a region of the 

image, and an edge connects two nodes if the 

corresponding regions are adjacent



Distance Transform

• Chamfer matching (binary shape matching)

Scene Image Feature Image Distance Image

correlation

Matching Result

Template

Each pixel value denotes the distance to the nearest feature pixel

DT allows more variability between a template and an object of interest in 
the image because a distance image provides a smooth cost function.

D. M. Gavrila, “A Bayesian, exemplar-based approach to hierarchical shape matching,”
IEEE Trans. Pattern Anal. Mach. Intell., Vol.29, No.8, pp.1408-1421, 2007. 



Distance Transform

• Distance between 𝑝 = 𝑥1, 𝑦1 and 𝑞 = 𝑥2, 𝑦2
– Manhattan distance

𝑑1 𝑝, 𝑞 = 𝑥1 − 𝑥2 + 𝑦1 − 𝑦2
– Euclidean distance

𝑑2 𝑝, 𝑞 = 𝑥1 − 𝑥2
2 + 𝑦1 − 𝑦2

2

• We use 𝑑1 in this application

• Distance transform

– For 𝑝 with 𝐁(𝑝) = 1

𝐷 𝑝 = min
𝐁 𝑞 =0

𝑑1(𝑞, 𝑝)

– Compute the distance to the nearest background pixel



Distance Transform

• Example



Distance Transform

• Procedure: Two sweeps for nonzero pixels 

only

– (b) forward sweep

𝐷 𝑟, 𝑐 = min{1 + 𝐷 𝑟 − 1, 𝑐 , 1 + 𝐷 𝑟, 𝑐 − 1 }

– (c) backward sweep

𝐷 𝑟, 𝑐 = min{𝐷 𝑟, 𝑐 , 1 + 𝐷 𝑟 + 1, 𝑐 , 1 + 𝐷 𝑟, 𝑐 + 1 }



Thresholding Gray-Scale Images to 

Make Binary Images

• The histogram h 

of an image I is a 

function, given 

by

– h(m) = the 

number of pixels 

in I which have 

value m 



Thresholding Gray-Scale Images to 

Make Binary Images

m

h

foregroundbackground
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