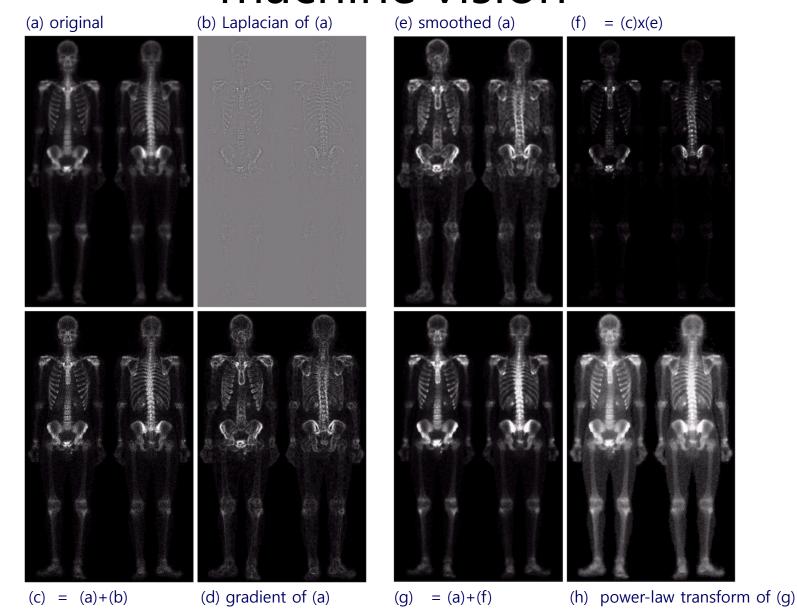
**KECE471 Computer Vision** 

#### Filtering and Enhancing Images

Chang-Su Kim

Chapter 5, Computer Vision by Shapiro and Stockman Note: Some figures and contents in the lecture notes of Dr. Stockman are used partly.

## Make it better for human or machine vision



### Make it better for human or machine vision

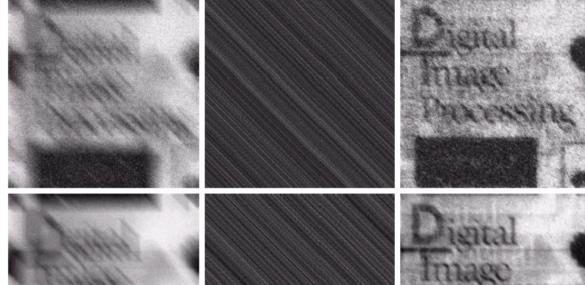


a b c

**FIGURE 4.20** (a) Original image (1028  $\times$  732 pixels). (b) Result of filtering with a GLPF with  $D_0 = 100$ . (c) Result of filtering with a GLPF with  $D_0 = 80$ . Note reduction in skin fine lines in the magnified sections of (b) and (c).

## Make it better for human or machine vision

Strong noise



Medium noise



Weak noise

### Image Enhancement and Restoration

#### Enhancement

 Subjective improvement of image quality to increase the detectability of important image details or objects by human or machine

#### Restoration

- Object recovery of original image from degraded image
- Knowledge on the image degradation process is required

### Deraining

Video Deraining and Desnowing

#### Personalized Enhancement

#### PieNet: Personalized Image Enhancement Networks - Supplemental Video -

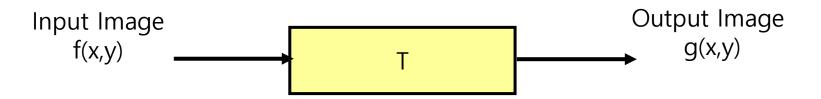
Han-Ul Kim<sup>1</sup>, Young Jun Koh<sup>2</sup>, and Chang-Su Kim<sup>1</sup>

<sup>1</sup>Korea University, Seoul, South Korea

hanulkim@mcl.korea.ac.kr, changsukim@korea.ac.kr

<sup>2</sup>Chungnam National University, Daejeon, South Korea yjkoh@cnu.ac.kr

#### Point Operator



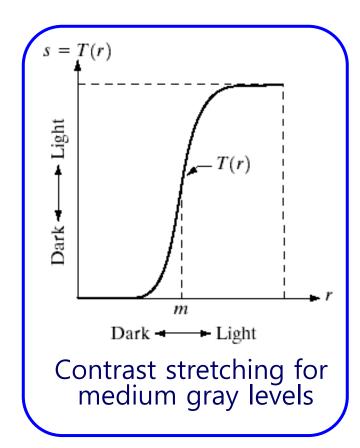
Point processing

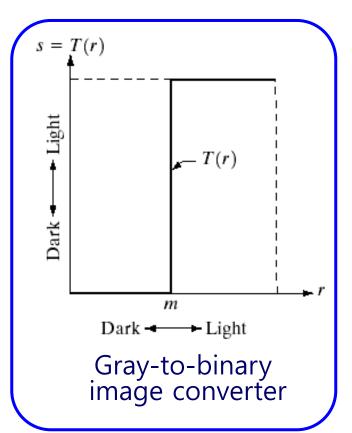
$$g(x,y) = T[f(x,y)]$$

- Output pixel value depends only on the input pixel value at the same location
- The enhancement system is fully described by

$$s = T(r)$$
  
where  $s = g(x,y)$  and  $r = f(x,y)$ 

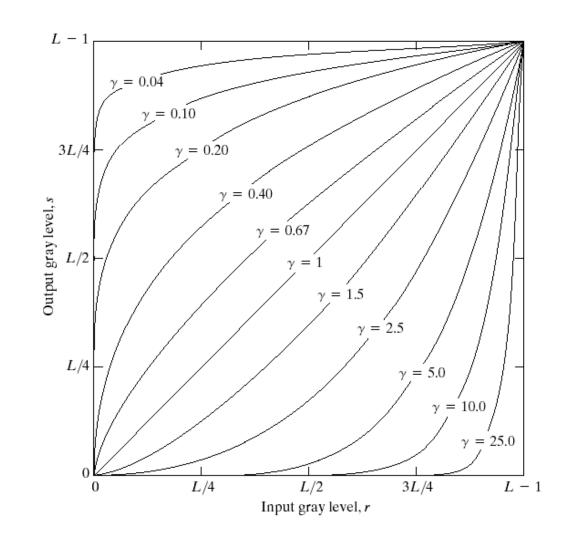
#### Point Operator





### Point Operator – Gamma Correction

- $s = c r^{\gamma}$   $- c = 255^{1-\gamma}$ :  $[0,255] \rightarrow [0,255]$
- $\gamma < 1$ :
  - expand dark levels and compress bright levels
- $\gamma > 1$ :
  - expand bright levels and compress dark levels
- Varying  $\gamma$  controls the amount of expansion and compression



- Histograms are the basis for numerous spatial domain image processing techniques
  - Rough estimate of probability distribution of gray levels
  - Simple to compute
- Histogram

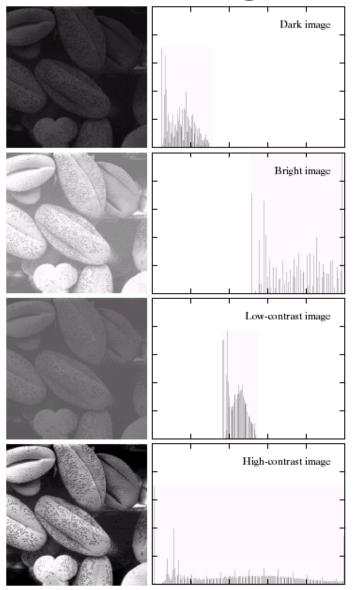
$$h(r_k) = n_k$$

- r<sub>k</sub>: k-th gray level
- $-n_k$ : the number of pixels in the image having gray level  $r_k$
- Normalized histogram

$$p(r_k) = n_k/n$$

n: the total number of pixels

$$-\sum_{k}p(r_{k})=1$$



- In general, the uniform distribution of gray levels is desirable
  - high contrast
  - a great deal of details
  - high dynamic range

- Example: An image of 128 pixels. There are 8 gray levels only.
  - Note that each gray level should have 16 pixels in the output histogram

| $r_k$      | 0 | 1 | 2  | 3  | 4  | 5   | 6   | 7   |
|------------|---|---|----|----|----|-----|-----|-----|
| $n_k$      | 1 | 7 | 21 | 35 | 35 | 21  | 7   | 1   |
| $\sum n_k$ | 1 | 8 | 29 | 64 | 99 | 120 | 127 | 128 |
| $T(r_k)$   | 0 | 0 | 1  | 3  | 6  | 7   | 7   | 7   |

- Ideally, starting from the smallest gray level,
  - the first 16 pixels should be assigned gray level 0
  - 32 pixels => gray level 0 or 1
  - 48 pixels => gray level 0, 1, or 2
  - 64 pixels => gray level 0, 1, 2, 3
  - 80 pixels => gray level 0, 1, 2, 3, 4
  - 96 pixels => gray level 0, 1, 2, 3, 4, 5
  - 112 pixels => gray level 0, 1, 2, 3, 4, 5, 6
  - 128 pixels => gray level 0, 1, 2, 3, 4, 5, 6, 7

$$(0, 1 => 0)$$

$$(0, 1, 2 => 0, 1)$$

Skip

$$(0, 1, 2, 3 => 0, 1, 2, 3)$$

Skip

Skip

$$(0, 1, 2, 3, 4 => 0, 1, 2, 3, 4, 5, 6)$$

$$(0, 1, 2, 3, 4, 5, 6, 7 => 0, 1, 2, 3, 4, 5, 6, 7)$$

- Example: An image of 128 pixels. There are 8 gray levels only.
  - Note that each gray level should have 16 pixels in the output histogram
  - More sophisticated equalization

| r <sub>k</sub>     | 0 | 1 | 2                           | 3                                           | 4  | 5   | 6   | 7   |
|--------------------|---|---|-----------------------------|---------------------------------------------|----|-----|-----|-----|
| $n_k$              | 1 | 7 | 21                          | 35                                          | 35 | 21  | 7   | 1   |
| $\sum n_k$         | 1 | 8 | 29                          | 64                                          | 99 | 120 | 127 | 128 |
| T(r <sub>k</sub> ) | 0 | 0 | 0: 8 pixels<br>1: 13 pixels | 1: 3 pixels<br>2: 16 pixels<br>3: 16 pixels |    |     |     |     |

| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | $\rightarrow$ | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---------------|---|
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | $\rightarrow$ | 1 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | $\rightarrow$ | 2 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | $\rightarrow$ | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | $\rightarrow$ | 4 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | $\rightarrow$ | 5 |
| 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | $\rightarrow$ | 6 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | $\rightarrow$ | 7 |

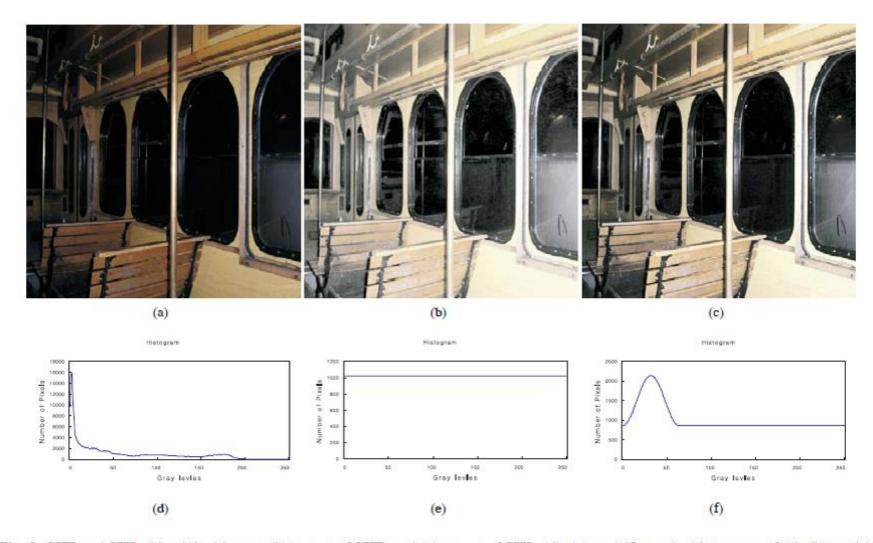
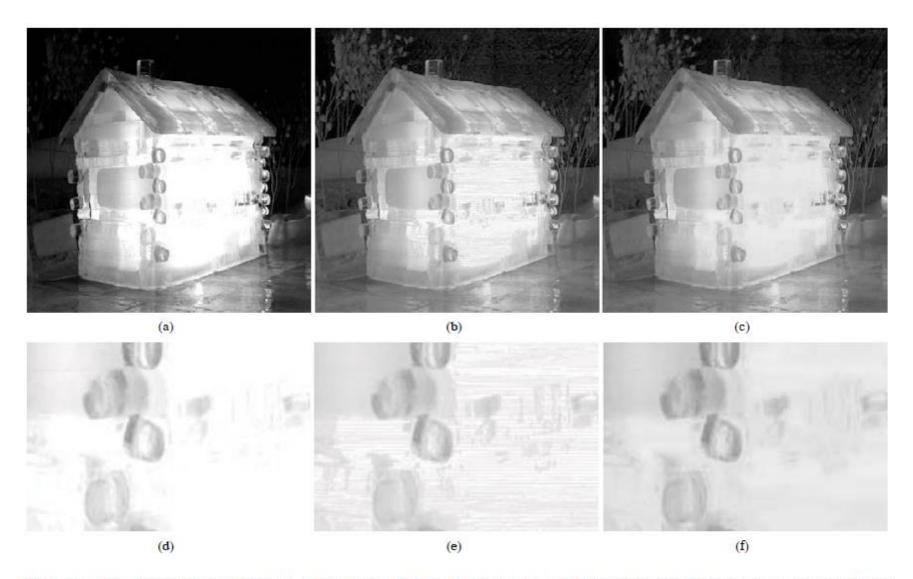


Fig. 2. SHE and SHS: (a) original image, (b) output of SHE, and (c) output of SHS. (d), (e), and (f) are the histograms of (a), (b), and (c), respectively.



 $\textbf{Fig. 3}. \ (a) \ \textbf{Original image}, \ (b) \ \textbf{output of SHE}, \ \textbf{and} \ (c) \ \textbf{output of SHE} + \textbf{POCS}. \ (d), \ (e), \ \textbf{and} \ (f) \ \textbf{are enlarged parts of} \ (a), \ (b), \ \textbf{and} \ (c), \ \textbf{respectively}.$ 

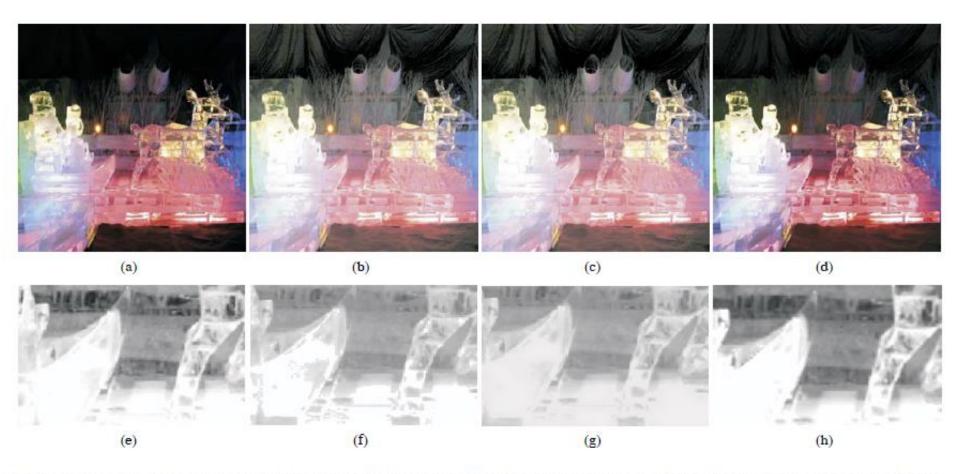
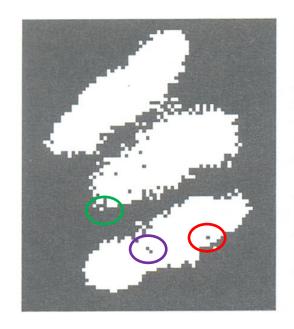


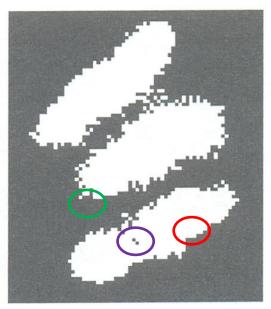
Fig. 4. Comparison of the proposed algorithm with the conventional histogram equalization method in [1]: (a) the original image SANTA, (b) the conventional histogram equalization method, (c) the proposed SHE + POCS algorithm, and (d) the proposed SHS + POCS algorithm. (e), (f), (g), and (h) are enlarged parts of (a), (b), (c), and (d), respectively.

### Removal of Small Image Regions

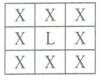
Removal of Salt-and-Pepper Noise



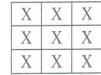
Input



8-neighbor decision



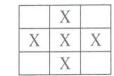




4-neighbor decision

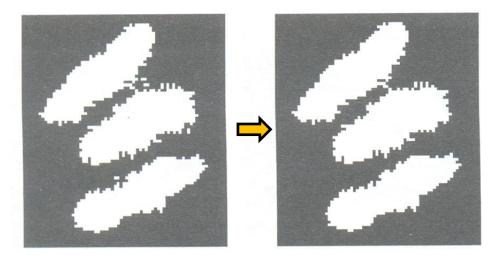
|   | X |   |
|---|---|---|
| X | L | X |
|   | X |   |



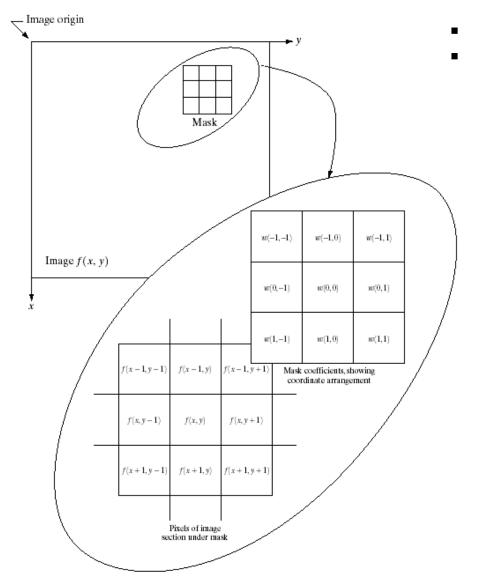


### Removal of Small Image Regions

- Removal of Small Components
  - Count the number of pixels in a component. If it is less than a threshold, remove the component.
  - ex) Threshold 12

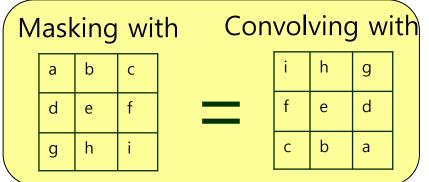


### Masking (Linear Filtering)



Mask is moved from pixel to pixel
At each location, the mask coefficients are
multiplied by the corresponding pixel
values, and then summed up

$$g(x,y) = w(-1,-1)f(x-1,y-1) \\ + w(-1,0)f(x-1,y) + ... \\ + w(1,1)f(x+1,y+1)$$



### Masking (Linear Filtering)

Masking with a mask w of size  $(2a + 1) \times (2b + 1)$ 

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolving with a filter h of size  $(2a + 1) \times (2b + 1)$ 

$$g'(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} h(s,t) f(x-s,y-t)$$

- Note that g(x,y) = g'(x,y) if w(s,t) = h(-s,-t)
- For masking, we use the following notation also

$$R = \sum_{i=1}^{k} w_i z_i = w_1 z_1 + w_2 z_2 + \ldots + w_k z_k$$

where  $w_i$ 's are masking coefficients and  $z_i$ 's are pixel values.

| $w_1$ | $w_2$ | $w_3$ |
|-------|-------|-------|
| $w_4$ | $w_5$ | $w_6$ |
| $w_7$ | $w_8$ | $w_9$ |

### Masking (Linear Filtering)

- Boundary problem
  - 1. Limit the excursion of the center of the mask, so that the mask is fully contained within the image
    - Output image is smaller than input image

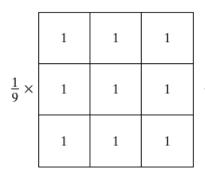
| 0 | 0 | 0 | 0 | 0 |  |
|---|---|---|---|---|--|
| 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | a | b | С |  |
| 0 | 0 | d | e | f |  |
| 0 | 0 | g | h | i |  |
|   |   |   |   |   |  |

- 2. Extrapolate the input image sufficiently, so that the mask can be applied near the boundaries also.
  - Zero padding
  - Repetition
  - Mirroring
  - etc

| а | а | а | b | C |   |
|---|---|---|---|---|---|
| а | a | а | b | С |   |
| а | a | а | b | С |   |
| d | d | d | е | f |   |
| g | g | g | h | i |   |
|   | _ |   |   |   | • |

| a | а | d | е | f  |  |
|---|---|---|---|----|--|
| а | а | a | b | С  |  |
| b | а | a | b | С  |  |
| е | d | d | e | f  |  |
| h | g | g | h | :- |  |
|   |   |   |   |    |  |

• Averaging filter (**box filter**) and weighted averaging filter



|   | 1 | 2 | 1 |
|---|---|---|---|
| × | 2 | 4 | 2 |
|   | 1 | 2 | 1 |

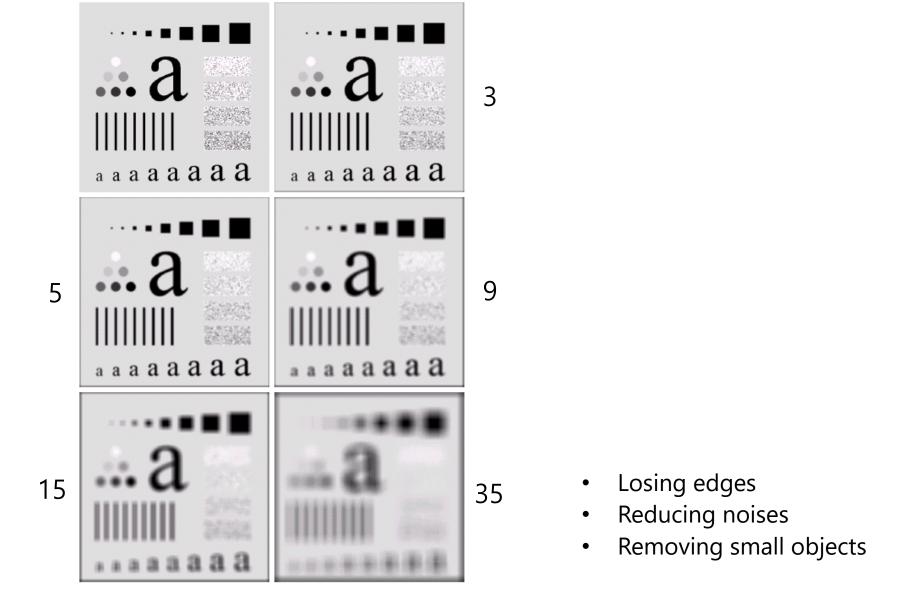
- Blends with adjacent pixel values
- Blurring
  - Removal of small details before large object extraction
  - Bridging of small gaps in lines or curves
  - Reduction of sharp transitions in gray levels
    - Advantage: noise reduction
    - Disadvantage: edge blurring

Gaussian filter

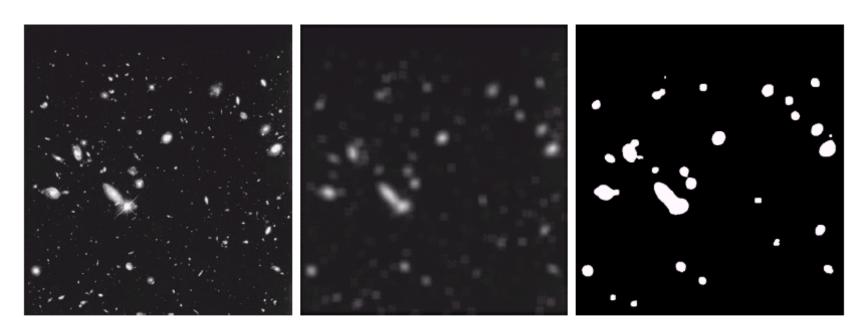
$$g(x,y) = c\sum_{s}\sum_{t}w(s,t)f(x+s,y+t)$$

where

$$w(s,t) = e^{-\frac{(s^2+t^2)}{2\sigma^2}}$$



• Finding objects of interest



a b c

**FIGURE 3.36** (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 × 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

#### Order-Statistics Filter

- Sort the gray levels of the neighborhood
  - (0, 1, 2, 2, <u>3</u>, 4, 5, 6, <u>6</u>) min median max
- Min filter
  - ▶ Replace the center pixel with the minimum gray level (0)
- Max filter
  - Replace the center pixel with the maximum gray level (6)
- Median filter
  - ▶ Replace the center pixel with the median (3)
  - Excellent suppression of salt-and-pepper noises without blurring

| 6 | 4 | 6 |
|---|---|---|
| 2 | 1 | 3 |
| 2 | 5 | 0 |

3x3 averaging filter 3x3 median filter

