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Abstract. An online video segmentation algorithm, based on short-term hierar-
chical segmentation (STHS) and frame-by-frame Markov random field (MRF)
optimization, is proposed in this work. We develop the STHS technique, which
generates initial segments by sliding a short window of frames. In STHS, we
apply spatial agglomerative clustering to each frame, and then adopt inter-frame
bipartite graph matching to construct initial segments. Then, we partition each
frame into final segments, by minimizing an MRF energy function composed
of unary and pairwise costs. We compute the unary cost using the STHS initial
segments and the segmentation result at the previous frame. We set the pairwise
cost to encourage similar nodes to have the same segment label. Experimental
results on a video segmentation benchmark dataset, VSB100, demonstrate that
the proposed algorithm outperforms state-of-the-art online video segmentation
techniques significantly.

Keywords: Video segmentation, online segmentation, streaming segmentation,
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1 Introduction

Segmentation, the task of partitioning data into disjoint subsets based on the underlying
data structure, is one of the most fundamental problems in computer vision. For im-
age segmentation, contour-based algorithms [1,2] have achieved great success recently.
As the state-of-the-art contour detector [3] presents comparable performance to the hu-
man visual system, the contour-based image segmentation can provide more promising
performance. On the other hand, video segmentation is the process to divide a video
into volumetric segments. It is applicable to a wide variety of vision applications, such
as action recognition, scene classification, video summarization, content-based video
retrieval, and 3D reconstruction. However, video segmentation still remains a challeng-
ing problem due to object and camera motion, occlusion, and contour ambiguities. To
overcome these issues, many attempts have been made.

Video segmentation algorithms can be categorized into offline or online ones. Of-
fline algorithms [4–10] divide a video into segments by processing all frames at once.
On the other hand, online (or streaming) algorithms [11–13] extract segments sequen-
tially from the first to the last frames. Note that the offline algorithms can achieve more
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accurate segmentation by exploiting the entire information in a video jointly, but they
require huge memory space for a long video. Thus, the online algorithms, which use
regular memory space regardless of the duration of a video, can be used more versa-
tilely in practical applications.

We propose a novel online video segmentation algorithm. The proposed algorithm
consists of two steps: short-term hierarchical segmentation (STHS) and Markov ran-
dom field (MRF) optimization. In the first pass, STHS generates initial segments se-
quentially, by sliding a short window of frames, to identify newly appearing segments
effectively. It attempts to prevent the propagation of erroneous segments by process-
ing each frame independently of the previous segmentation results. In the second pass,
we define an MRF energy function for obtaining the final segmentation result of each
frame, which consists of unary and pairwise costs. The unary cost takes into account
the segmentation result at the previous frame and the initial STHS result at the current
frame. The pairwise cost is computed based on node affinities. Then, we achieve tem-
porally coherent and spatially accurate video segmentation by minimizing the energy
function. Experimental results demonstrate that the proposed algorithm outperforms the
state-of-the-art conventional algorithms in [11–13] on the video segmentation bench-
mark (VSB) dataset [14]. To summarize, this paper has three main contributions.

– Development of STHS, which combines spatial agglomerative clustering and tem-
poral bipartite graph matching to detect newly appearing objects and achieve initial
video segmentation reliably.

– Proposal of the MRF optimization scheme, which refines the initial segmentation
results and yield temporally coherent and spatially accurate segments.

– Remarkable performance achievement on the VSB dataset, which consists of chal-
lenging video sequences.

2 Related Work

2.1 Offline Video Segmentation

An offline video segmentation algorithm processes all frames in a video simultaneously.
Corso et al. [4] developed a graph-based video segmentation algorithm using a hierar-
chical structure. Grundmann et al. [5] also proposed a hierarchical algorithm, which
merges similar superpixels sequentially in a spatiotemporal graph. Galasso et al. [7]
first applied the spectral clustering [15] to the video segmentation problem. Galasso et
al. [14] assessed video segmentation algorithms by introducing a benchmark dataset,
called VSB100. Khoreva et al. [8] introduced learning-based must-link constraints,
which enforce two nodes to belong to the same cluster during spectral clustering. Also,
Khoreva et al. [9] trained a classifier to determine affinities between superpixels, and
selected edges to construct a sparse efficient graph. Yi and Pavlovic [10] proposed an
MRF model, whose node potentials are obtained from the results of [5]. Yu et al. [16]
introduced a parametric graph partitioning method to identify and remove between-
cluster edges. While these offline algorithms provide promising segmentation results,
they often demand huge memory space to process all frames simultaneously. Thus, they
may fail to segment long video clips.
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2.2 Online Video Segmentation

An online (or streaming) video segmentation algorithm sequentially partitions from the
first to the last frames in a video sequence. To segment a frame, it uses only a few (usu-
ally less than 10) previous and subsequent frames. Vazquez-Reina et al. [17] proposed
an online algorithm, which sequentially divides video frames into partitions by selecting
optimal hypothesis flows of superpixels. Xu et al. [11] applied the hierarchical image
segmentation algorithm in [18] to two consecutive frames to propagate segment labels
temporally. Also, online supervoxel algorithms have been proposed to yield regularly
sized spatiotemporal segments [19, 20]. Recently, Galasso et al. [12] reduced the full
graph for a video, by re-assigning edge weights, and achieved streaming segmentation
by performing the clustering on the reduced graph. Moreover, Li et al. [13] decom-
posed an affinity matrix into low-rank ones to represent relations among supervoxels
efficiently and applied the normalized cuts to the low-rank matrices.

2.3 Video Object Segmentation

Many attempts have been made to separate salient objects from the background in
a video. Shi and Malik [21] clustered motions using the normalized cuts. Brox and
Malik [22] exploited long-term point trajectories to determine object tracks. Ochs and
Brox [6] converted sparse point trajectories into dense regions to yield pixel-wise object
annotations. Ochs and Brox [23] employed the spectral clustering on point trajectories
to delineate objects. Also, several algorithms [24–26] have been proposed to achieve
video object segmentation using object proposal techniques. They first generate ob-
ject proposals in all frames and then delineate objects by determining proposal tracks.
Oneata et al. [27] developed a video object proposal algorithm by generating supervox-
els. Wang et al. [28] adopted saliency detection techniques to segment a primary object.
Giordano et al. [29] segmented moving objects by observing temporal consistency of
sequential superpixels. Taylor et al. [30] analyzed occluder-occluded relations to en-
sure temporal consistency of objects. Jang et al. [31] minimized an energy function by
performing the alternate convex optimization to discover a primary object sequentially.
However, these video object segmentation algorithms may fail to segment temporally
static or small objects, since they focus on moving, salient, and relatively large objects
in general.

3 Proposed Algorithm

We propose a novel online video segmentation algorithm. The input is a set of consecu-
tive video frames, and the output is a set of the corresponding pixel-wise segment label
maps. All pixels in a spatiotemporal segment are assigned the same label.

Fig. 1 shows an overview of the proposed algorithm. First, we apply STHS to a
short window of frames in order to segment the current frame initially. STHS merges
spatially similar superpixels in each frame into clusters, and then links temporally co-
herent clusters. For the spatial and temporal merging, we adopt agglomerative cluster-
ing and bipartite graph matching, respectively. Second, we obtain final segment labels
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Fig. 1. Overview of the proposed algorithm. To partition the current frame τ , we apply the short-
term hierarchical segmentation (STHS) to a window of frames from τ − α to τ + α. Then, we
obtain the final segmentation result at frame τ , by minimizing an MRF energy function, based on
the initial STHS result and the previous segmentation result at frame τ − 1

at the current frame τ , by minimizing an MRF energy function that consists of unary
and pairwise costs. The unary cost is defined using the initial STHS result and the previ-
ous segmentation result at frame τ − 1, and the pairwise cost encourages similar nodes
to have the same label. We perform this process sequentially from the first to the last
frames to achieve streaming video segmentation.

3.1 Feature Extraction

For each frame τ , we estimate both forward and backward optical flows using [32].
Also, we over-segment each frame into superpixels using the mean-shift algorithm [33].
For the mean-shift, we fix the parameters of spatial bandwidth and range bandwidth to
9 and 5, respectively, and set the minimum superpixel area to 0.1% of the number of
pixels in a frame. We extract three types of features: color feature, motion feature, and
boundary feature. Let us describe these three features subsequently.

Color is a fundamental feature for image and video segmentation. We first repre-
sent each superpixel with a histogram of LAB colors. Each dimension is quantized into
20 bins independently. Also, we extract bag-of-words (BoW) features in the LAB and
RGB color spaces, respectively. We generate the BoW using the K-means algorithm,
whereK equals 300 for both LAB and RGB spaces. By aggregating the encoded words
in each superpixel, we obtain the LAB and RGB BoW histograms. Thus, to obtain the
color feature hc of a superpixel, we concatenate the LAB histogram, the LAB BoW his-
togram, and the RGB BoW histogram. Consequently, the dimension of a color feature
is 660, hc ∈ R660×1.

Unlike image segmentation, video segmentation can exploit motion features, as well
as color features. Motion features are complementary to color features, since they can
distinguish similarly colored regions that move differently. To encode motion charac-
teristics, we construct a BoW, by employing both backward and forward optical flows
and setting K to 100. We represent each superpixel with the backward and forward
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(a) Input frame (b) UCM (c) UCM> 0.1 (d) UCM> 0.3 (e) UCM> 0.5

Fig. 2. Examples of various segmentation results using an ultrametric contour map (UCM) [1].
As the threshold increases, segments are separated by stronger boundaries only

optical flow BoW histograms, respectively. Then, we construct the motion feature hm

by cascading the two histograms. Therefore, the dimension of a motion feature is 200,
hm ∈ R200×1. In the first frame, the backward optical flow BoW histogram is unavail-
able, and thus copied from the forward one. Similarly, in the last frame, the forward
histogram is copied from the backward one.

A good segment should be enclosed by a reliable boundary. Hence, we adopt a
boundary feature to differently characterize superpixels that have strong boundaries
between them. More specifically, we use results of the contour-based segmentation al-
gorithms in [1, 34], which generate segments with reliable boundaries. Let us consider
segment labels as encoded words on each pixel. Then, we can obtain a histogram of the
segment labels for each superpixel. Notice that the number of bins varies according to
the number of segment labels. In this work, to exploit multiple levels of segmentation
granularity, we generate three segmentation maps with thresholds 0.1, 0.3, and 0.5, re-
spectively. Fig. 2 shows segmentation results of [1] according to the thresholds. As the
threshold increases, segments are divided by stronger boundaries only. We cascade the
three label histograms to obtain the boundary feature hb of a superpixel. When two su-
perpixels have different boundary features, there are a strong boundary between them.
Notice that we use [34] for a faster version of the proposed algorihm.

We construct the LAB, RGB, and optical flow BoW features using the 40 training
sequences in the VSB100 dataset [14]. We normalize each feature hc, hm, or hb to make
its l2-norm to 1, i.e.

∑
i h

2
i = 1.

3.2 Short-Term Hierarchical Segmentation

In general, offline algorithms delineate newly appearing objects more effectively than
online ones do, since they consider all frames at once. It is hard to find new objects
using the current and previous frames only. Therefore, we develop STHS that performs
initial segmentation of frame τ , by sliding a short window of frames from τ−α to τ+α,
where α is set to 7. In other words, STHS consider the subsequent α frames, as well
as the current and previous α frames, to identify object appearance more effectively. In
general, the future frames are used in the streaming video segmentation algorithms [7,
11,35]. Also, within the entire segmentation algorithm in Fig. 1, STHS helps to alleviate
the propagation of segmentation errors in the previous frames, by providing an initial
segmentation result, which is independent of the previous segmentation results. Fig. 3
visualizes the efficacy of STHS in comparison with the spatial clustering, which uses



6 W.-D. Jang and C.-S. Kim

(a) Frame τ (b) Frame τ + α (c) Spatial clustering (d) STHS

Fig. 3. Efficacy of STHS in comparison with the spatial clustering. The newly appearing man at
frame τ is depicted by yellow boundaries. While the spatial agglomerative clustering divides the
man into unnecessarily many segments, STHS represents him concisely with fewer segments by
exploiting the information in the future frame τ + α

the current frame only. It is observable that STHS describes the appearing man from the
right more concisely with fewer segments.

STHS consists of spatial agglomerative clustering and temporal graph matching
techniques. In the spatial clustering, all color, motion, and boundary features are used
to merge superpixels in each frame. On the other hand, only color features are used in
the temporal graph matching between frames, since motion and boundary features are
not temporally coherent.

For each frame t in the short-term window τ −α ≤ t ≤ τ +α, we adopt the simple
agglomerative clustering [36] to merge the most similar pair of clusters iteratively. First,
we define a graph G(t) = (V (t), E(t)) for frame t, where V (t) = {x1, . . . , xN} is the
set of nodes and E(t) = {eij} is the set of edges. The superpixels become the nodes. If
two superpixels xi and xj share a boundary, they are connected by edge eij . Note that
these graphs {G(1), . . . , G(T )} are also used in the MRF optimization in Section 3.3,
where T denotes the number of frames in an input video. To perform the agglomerative
clustering at frame t, we initially regard superpixels {x1, . . . , xN} as individual clusters
{c1, . . . , cN}. We measure the distances between these clusters by

d(ci, cj) =

{
dχ2(xi, xj) if eij ∈ E(t),
∞ otherwise,

(1)

where dχ2 denotes the chi-square distance between xi and xj in the feature space. We
use the color feature hc, motion feature hm, and boundary feature hb by concatenating
them. We normalize the concatenated feature again. Then, we iteratively merge the two
clusters ci and cj that yield the minimum distance. The mergence yields a new cluster
cn. The distance between the new cluster cn and an existing cluster ck is updated by

d(cn, ck) = min {d(ci, ck), d(cj , ck)} (2)

according to the single link algorithm [36]. We terminate the merging when the min-
imum distance is higher than a threshold γ. Notice that this threshold γ controls the
segmentation granularity. Finally, we reassign the cluster indices from 1 to the number
of clusters. Let c(t)u denote the resultant uth cluster at frame t.

After the intra-frame agglomerative clustering, we link the clusters temporally in
the short-term window. To this end, we perform the temporal matching between two
frames, t and t + 1, sequentially for τ − α ≤ t ≤ τ + α − 1. We first construct a
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bipartite graph G(t,t+1) = (U (t), U (t+1), E(t,t+1)), where U (t) = {c(t)1 , . . . , c
(t)
N } is

the set of nodes at frame t. The clusters, produced by the intra-frame agglomerative
clustering, become the nodes. E(t,t+1) = {e(t,t+1)

uv } is the set of inter-frame edges.
Node c(t)u at frame t is connected to node c(t+1)

v by edge e(t,t+1)
uv , if at least one pixel

within c(t)u is mapped to a pixel within c(t+1)
v according to the forward or backward

optical flow. Then, edge e(t,t+1)
uv is assigned an affinity weight, given by

w(t,t+1)
uv =

{
η(c

(t)
u , c

(t+1)
v ) if e(t,t+1)

uv ∈ E(t,t+1),
0 otherwise,

(3)

where η is a similarity function between the two clusters. It is defined as

η(c(t)u , c(t+1)
v ) = ηc(c

(t)
u , c(t+1)

v )× ηo(c
(t)
u , c(t+1)

v ) (4)

where ηc and ηo are color and overlap similarities, respectively. We measure the color
similarity by

ηc(c
(t)
u , c(t+1)

v ) = exp
(
−dχ2(c(t)u , c(t+1)

v )
)

(5)

in which dχ2 denotes the chi-square distance between the color features for the two
clusters. As mentioned previously, for the inter-frame matching, we do not use the mo-
tion and boundary features due to their inter-frame irrelevance. We compute the overlap
similarity by

ηo(c
(t)
u , c(t+1)

v ) =
1

2

(
|P(t)
u ∩

←−
P (t+1)
v |

maxk |P(t)
k ∩

←−
P (t+1)
v |

+
|
−→
P (t)
u ∩ P(t+1)

v |
maxk |

−→
P (t)
u ∩ P(t+1)

k |

)
(6)

where P(t)
u is the set of pixels that belongs to cluster c(t)u . Also,

−→
P (t)
u is the set of pixels

at frame t + 1, which are mapped from the pixels in P(t)
u by the forward optical flow

vectors. Symmetrically,
←−
P (t+1)
v is the set of pixels at frame t, which are mapped from

P(t+1)
u by the backward vectors. The operator | · | returns the number of elements in

a set. Note that a higher similarity ηo(c
(t)
u , c

(t+1)
v ) is assigned, as the two clusters are

more overlapped by the forward or backward warping.
To represent temporal matching results, we define a matching variable µ(t,t+1)

uv ,
which equals 1 if c(t)u is matched to c(t+1)

v , and 0 otherwise. To determine the set of
matching variablesM = {µ(t,t+1)

uv }, we maximize the objective function

max
M

τ+α−1∑
t=τ−α

∑
u∈U(t)

∑
v∈U(t+1)

µ(t,t+1)
uv × w(t,t+1)

uv (7)

subject to the constraints∑
v∈U(t+1)

µ(t,t+1)
uv ≤ 1, µ(t,t+1)

uv ∈ {0, 1}. (8)

This constrained maximization can be easily solved by performing the greedy bipartite
matching from t = τ − α to t = τ + α − 1 sequentially. In other words, for each
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Fig. 4. An example of the temporal graph matching with α = 2. Each circle denotes a cluster.
The clusters in an identical color have the same label. c(τ)4 is not matched to any cluster at frame
τ + 1. While c(τ)2 and c(τ)3 are not merged in the intra-frame clustering, they are assigned the
same label after the temporal matching

cluster at frame t, we match it to the cluster at frame t + 1 that is connected with the
highest affinity. However, to reflect occlusion scenarios, if all affinities between cluster
c
(t)
u and clusters at frame t + 1 are smaller than a threshold, we do not match c(t)u to

any cluster at frame t + 1 and
∑
v∈U(t+1) µ

(t,t+1)
uv = 0. After the temporal matching,

we assign an identical label to the set of clusters that are connected according to the
matching variables. Finally, the label of a cluster becomes the initial segment labels of
all superpixels that the cluster includes. Let s(t)i denote the initial segment that includes
superpixel xi at frame t. Notice that, in the following process, we only use the initial
segment results at frame τ .

Fig. 4 exemplifies the temporal matching of inter-clusters. The temporal matching
assigns segment labels in a temporally coherent manner, and groups some clusters in a
frame that are not merged in the agglomerative clustering. Thus, by employing STHS,
we can detect newly appearing segments and also group distant superpixels that com-
pose the same segment. Algorithm 1 summarizes the proposed STHS scheme.

3.3 MRF Optimization

Next, we partition the current frame τ into segments by employing the initial segments,
which are obtained by STHS. To this end, we develop an MRF optimization scheme.
We use the graphG(τ) = (V (τ), E(τ)), which is already constructed for the intra-frame
agglomerative clustering in Section 3.2. The node set V (τ) = {x(τ)1 , . . . , x

(τ)
N } consists

of the superpixels at frame τ . We define a variable y(τ)i to indicate the label of node
x
(τ)
i . By combining unary and pairwise costs, the MRF energy function is defined as

E(y(τ)) =
∑
i∈V (τ)

ψ(x
(τ)
i , y

(τ)
i ) + λ×

∑
(i,j)∈E(τ)

φ(x
(τ)
i , x

(τ)
j , y

(τ)
i , y

(τ)
j ) (9)

where λ controls the relative importance between the unary and pairwise costs.



Video Segmentation via Hierarchical Segmentation and MRF Optimization 9

Algorithm 1 Short-Term Hierarchical Segmentation (STHS)
Input: Superpixels in a window of frames from τ − α to τ + α

1: for frame t = τ − α to τ + α do
2: Set each superpixel as an individual cluster
3: Compute the distance between each pair of neighboring superpixels . (1)
4: repeat
5: Find a cluster pair of the minimum distance
6: Merge the two clusters into a new cluster
7: Update the distances between the new cluster and the existing clusters . (2)
8: until the minimum distance is higher than γ
9: end for

10: for frame t = τ − α to τ + α− 1 do
11: Construct a bipartite graph for the clusters in two consecutive frames t and t+ 1 . (3)
12: Perform the inter-frame matching between clusters . (7)
13: end for
14: Assign an identical label to each set of connected clusters
Output: Initial segment label of each superpixel in the window of frames

The unary cost is given by

ψ(x
(τ)
i , l) = − log p(l |x(τ)i ) (10)

= − log
θs(x

(τ)
i , l) + θt(x

(τ)
i , l)∑

k(θs(x
(τ)
i , k) + θt(x

(τ)
i , k))

(11)

where p(l |x(τ)i ) is the probability that node x(τ)i belongs to the lth segment. In other
words, the unary cost ψ(x(τ)i , l) gets lower, as node x(τ)i is more likely to be labeled
as l. In (11), θs and θt are the STHS similarity function and the temporal consistency
function, respectively.

Although STHS provides robust initial segmentation results, they are not harmo-
nized with the labels at the previous frame τ − 1. Hence, for each initial segment at
the current frame τ , we check if it is consistent with each label l at frame τ − 1. More
specifically, we compute the STHS similarity function θs(x

(τ)
i , l) by

θs(x
(τ)
i , l) =

{
η(z

(τ−1)
l , s

(τ)
i ) if maxk η(z

(τ−1)
k , s

(τ)
i ) > β,

0 otherwise,
(12)

where η is the similarity function in (4), and the threshold β is 0.5. Also, z(τ−1)l denotes
the segment that has label l at frame τ − 1. If the initial segment s(τ)i including super-
pixel x(τ)i is similar to the segment z(τ−1)l , the function θs(x

(τ)
i , l) yields a high value.

Moreover, we generate new labels to consider newly appearing segments. Specifically,
if maxk η(z

(τ−1)
k , s

(τ)
i ) ≤ β, we declare that s(τ)i is not harmonized with any existing

label at the previous frame. For this inharmonic initial segment, we assign a new label l̂
and set the STHS similarity by θs(x

(τ)
i , l̂) = 1. Note that we regard all initial segments

at the first frame as inharmonic.



10 W.-D. Jang and C.-S. Kim

(a) Input frame (b) Before SLE (c) After SLE (d) Short-labels

Fig. 5. An example of the short-label elimination (SLE). Noisy labels with short durations are
depicted in black in (d). They are erased, and the corresponding superpixels are re-labeled using
the neighboring labels in (c). The frames are from “Chameleons”

To enforce temporal coherence of inter-frame segments, we adopt the temporal con-
sistency function θt(x

(τ)
i , l) in the unary cost in (11), which is given by

θt(x
(τ)
i , l) = exp

(
−dχ2(←−x (τ)

i , x
(τ)
i )
)
×

|Z(τ−1)
l ∩

←−
X (τ)
i |

maxk |Z(τ−1)
k ∩

←−
X (τ)
i |

(13)

where←−x (τ)
i denotes the superpixel at frame τ − 1, which is warped from x

(τ)
i by the

backward optical flow vectors, and
←−
X (τ)
i is the set of pixels in ←−x (τ)

i . Also, Z(τ−1)
l

is the set of pixels within the lth segment at frame τ − 1. The chi-square distance
dχ2(←−x (τ)

i , x
(τ)
i ) is computed using only the color features. Note that θt(x

(τ)
i , l) yields

a higher value when the color matching error is smaller and the warped area
←−
X (τ)
i has

a bigger overlap with the lth segment Z(τ−1)
l . Thus, the temporal consistency function

helps to propagate the segment labels at the previous frame to the current frame.
To encourage neighboring nodes with similar features to have the same segment

label, we define the pairwise cost in (9) by

φ(x
(τ)
i , x

(τ)
j , y

(τ)
i , y

(τ)
j ) =

{
exp(−dχ2(x

(τ)
i , x

(τ)
j )) if y(τ)i 6= y

(τ)
j ,

0 otherwise,
(14)

where dχ2 is computed using all the color, motion, and boundary features.
We employ the graph-cut algorithm [37] to minimize the MRF energy function

in (9). Consequently, we obtain the segment label of each superpixel at the current
frame. This segmentation result is recorded for segmenting the next frame.

3.4 Short-Label Elimination

In general, an online segmentation algorithm may produce noisy segments, which have
short temporal durations. To suppress such noise, we develop the short-label elimina-
tion scheme. At frame τ , we check the temporal duration of each segment at frame τ−ε,
where ε = 10. If the duration is shorter than ε, we erase the labels of the correspond-
ing superpixels. To re-label these erased superpixels, we apply the MRF optimization
scheme again. For a non-erased superpixel, its unary cost is set to 0 for the original
label, and 1 for the other labels. For an erased superpixel, its unary cost is set to 1



Video Segmentation via Hierarchical Segmentation and MRF Optimization 11

Table 1. Comparison of video segmentation performances on the VSB100 [14]. The best and the
second best results are boldfaced and underlined, respectively

BPR VPR Length NCL Time
Algorithm ODS OSS AP ODS OSS AP µ(δ) µ SPF

Human 0.81 0.81 0.67 0.83 0.83 0.70 83.24(40.04) 11.90 -
Oracle [14] 0.61 0.67 0.61 0.65 0.67 0.68 - 118.56 -

A. Offline segmentation algorithms
Corso et al. [4] 0.51 0.53 0.37 0.51 0.52 0.38 70.67(48.39) 25.83 -
Grundmann et al. [5] 0.47 0.54 0.41 0.52 0.55 0.52 51.83(39.91) 117.90 26.8
Ochs and Brox [6] 0.17 0.17 0.06 0.25 0.25 0.12 87.85(38.83) 3.73 268.9
Galasso et al. [7] 0.51 0.56 0.45 0.45 0.51 0.42 80.17(37.56) 8.00 425.6
Galasso et al. [14] 0.61 0.65 0.59 0.59 0.62 0.56 25.50(36.48) 258.05 -
Galasso et al. [12] 0.62 0.66 0.54 0.55 0.59 0.55 61.25(40.87) 80.00 -
Khoreva et al. [8] 0.61 0.64 0.51 0.58 0.61 0.58 60.48(43.19) 50.00 -
Khoreva et al. [9] 0.64 0.70 0.61 0.63 0.66 0.63 83.41(35.27) 50.00 416.2
Yi and Pavlovic [10] 0.63 0.67 0.57 0.65 0.67 0.64 35.76(38.72) 168.93 -

B. Online segmentation algorithms
Xu et al. [11] 0.38 0.46 0.32 0.45 0.48 0.44 59.27(47.76) 26.58 39.2
Galasso et al. [12] 0.61 0.67 0.52 0.55 0.59 0.53 73.31(40.33) 15.63 -
Li et al. [13] 0.54 0.58 0.40 0.53 0.60 0.46 - - -
Proposed 0.63 0.66 0.53 0.66 0.68 0.62 36.61(31.19) 133.22 176.1
Proposed (Faster ver.) 0.63 0.66 0.51 0.66 0.68 0.62 37.01(31.27) 140.97 18.6

for all labels. Also, we use the same pairwise cost in (14). Then, we minimize the en-
ergy function using the graph-cut algorithm. Consequently, the erased superpixels are
labeled consistently with the neighboring superpixels. Fig. 5 shows an example of the
short-label elimination.

4 Experimental Results

We test the proposed video segmentation algorithm on the VSB100 dataset [14], which
consists of 40 training videos and 60 test videos. The spatial resolution of these video
sequences are between 960× 720 and 1920× 1080. The ground-truth is annotated for
every 20th frame by four subjects. The VSB100 sequences are very challenging due to
motion blur, jerky camera motion, occlusion, object deformation, and ambiguous object
boundaries. For efficient computation, we test the proposed algorithm after resizing
video frames by a factor of 0.5 in both x and y directions. We use the same parameters
for all experiments, unless otherwise specified.

We use two performance metrics, boundary precision-recall (BPR) and volume
precision-recall (VPR), which were introduced in [14]. BPR measures the qualities
of segmentation boundaries in the precision-recall framework after the bipartite graph
matching between computer-generated boundaries and the ground-truth boundaries.
VPR assesses volumetric qualities of segmentation by computing the maximal over-
lap between computer-generated segments and the ground-truth segments. For both
BPR and VPR, we calculate the average precision (AP), which is the area under the
precision-recall curve. We report the optimal dataset scale (ODS) performance and the
optimal segmentation scale (OSS) performance according to the aggregation strategy
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(a) Input frame (b) Ground-truth (c) γ = 0.1 (d) γ = 0.2 (e) γ = 0.4

Fig. 6. Segmentation results of the proposed algorithm in various scales according to the param-
eter γ. As γ increases, the proposed algorithm generates coarser segments. The frames are from
“Fish Underwater”
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Fig. 7. Comparison of the precision-recall curves of the proposed algorithm and the conventional
algorithms [4–7, 11, 14]

of F-measure scores. While ODS aggregates the scores of all sequences at a fixed seg-
mentation scale, OSS discovers the optimal scale for each sequence. Hence, OSS yields
a higher score than ODS. The proposed algorithm controls the scale of segmentation
using the spatial merging threshold γ ∈ {0.1, . . . , 0.6}, which is more practical than
specifying the number of segments. Fig. 6 visualizes segmentation results of the pro-
posed algorithm according to the scale parameter γ. As γ increases, more superpixels
are merged, resulting in coarser segments. In addition, we count the number of segments
(NCL) and compute the average length (µ) and the standard deviation (δ) of segment
durations in ODS. We analyze running times of the proposed algorithm and the conven-
tional methods [5–7, 9, 11] by seconds per frame (SPF) for “Arctic Kayak” sequence at
640× 360 resolution. We test the methods on a PC with a 3.0GHz CPU.

Table 1 compares the performance of the proposed algorithm on the VSB100 dataset
with those of 12 conventional algorithms: nine offline methods [4–10, 12, 14] and three
online methods [11–13]. The scores of the conventional algorithms are from [9, 10,
12, 13]. The oracle method links the per-frame UCM segments [1] optimally using the
ground-truth data as specified in [14]. We see that the proposed algorithm surpasses
the conventional online video segmentation algorithms in terms of both BPR and VPR.
Especially, in terms of VPR ODS, the proposed algorithm provides a 20% gain, com-
pared with the state-of-the-art online algorithm [12]. Moreover, the proposed algorithm
even outperforms most offline video segmentation algorithms and provides comparable
performances to the state-of-the-art offline algorithms [9,10]. In addition, we develop a
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(a) (b) (c) (d) (e)

Fig. 8. Qualitative results of the proposed segmentation algorithm. (a), (b), and (c) show the input
frame, the ground-truth, and the computed results at the same frames, respectively. (d) and (e)
illustrate more segmentation results at different frames. From top to bottom, the frames are from
“Arctic Kayak,” “Gokart,” “VW Commercial,” and “Bicycle Race” in the VBS100 dataset [14]

faster version, which shortens the overall running time from 176.1 to 18.6 by employing
lighter optical flow estimator, [32] without matching, and faster contour detector [34].
The faster version reduces the running time by 89%, while sacrificing a small BPR-AP
score only. The faster version of the proposed algorithm is faster than all conventional
methods.

Fig. 7 shows the precision-recall curves of BPR and VPR. We compare the proposed
algorithm with the conventional algorithms [4–7, 11, 14], whose results are available in
the benchmark [14]. Among them, only the proposed algorithm and [11] are online
ones, and the others are offline ones. The curves of the proposed algorithm are mostly
higher than those of the conventional algorithms. Furthermore, the proposed algorithm
partly outperforms the oracle method, which uses the ground-truth data.

Fig. 8 exemplifies segmentation results of the proposed algorithm in OSS. It is ob-
servable that the proposed algorithm yields spatially accurate and temporally coherent
segments. Especially, the proposed algorithm robustly identifies newly appearing seg-
ments on the “Arctic Kayak” and “Gokart” sequences. Also, the proposed algorithm
provides successful results on “VW Commercial” and “Bicycle Race,” even though
there are fast camera motions. Due to the page limitation, we provide more segmenta-
tion results as supplementary materials.

Next, in Table 2, we analyze the efficacy of each energy term in the MRF opti-
mization. We test three configurations: ‘STHS + Pairwise,’ ‘Temporal + Pairwise,’ and
‘STHS + Temporal.’ First, in ‘STHS + Pairwise,’ we omit the temporal consistency
function θt in (11). Second, ‘Temporal + Pairwise’ does not perform STHS and ignores
the STHS similarity function θs in (11). Third, in ‘STHS + Temporal,’ we omit the
pairwise cost in the MRF optimization. Note that the omission of the temporal consis-
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Table 2. The segmentation performance of the proposed algorithm using various experimental
configurations

BPR VPR Length NCL
Experimental setting ODS OSS AP ODS OSS AP µ(δ) µ

Proposed algorithm 0.63 0.66 0.53 0.66 0.68 0.62 36.61(31.19) 133.22

A. Combination of energy functions
STHS + Pairwise 0.62 0.66 0.55 0.64 0.66 0.59 34.02(28.69) 119.45
Temporal + Pairwise 0.57 0.61 0.45 0.61 0.64 0.55 65.64(40.38) 39.02
STHS + Temporal 0.62 0.65 0.52 0.65 0.67 0.62 35.43(30.26) 125.68

B. Post processing (short-label elimination)
Without post processing 0.63 0.66 0.52 0.66 0.68 0.62 13.54(23.49) 345.83

tency function in ‘STHS + Pairwise’ leads to worse VPR scores. Since the proposed
STHS plays an essential role in handling newly appearing segments and alleviating
the propagation of erroneous segmentation labels, ‘Temporal + Pairwise’ presents the
worst scores. Also, the omission of the pairwise term in ‘STHS + Temporal’ leads to
the performance degradation. However, since we consider spatial affinities in STHS,
the degradation is relatively small.

To analyze the effectiveness of the short-label elimination, we measure the perfor-
mance of the proposed algorithm without the post processing. As reported in Table 2,
the short-label elimination extends the average duration of segments and decreases the
number of segments, by eliminating noisy segments. It does not increase BPR and VPR
significantly, since the noisy segments are too small to affect on the quantitative results.

5 Conclusions

We proposed a novel online video segmentation algorithm. To identify newly appear-
ing segments effectively, we introduced the STHS technique, which generates initial
segments by sliding a window of frames. We first employed the spatial agglomerative
clustering for each frame, and then performed the temporal bipartite graph matching
across frames. Moreover, we defined the MRF energy function, which consists of the
unary and pairwise costs. We computed the unary cost to exploit the initial STHS result
and the previous segmentation result, and the pairwise cost to encourage similar super-
pixels to have the same label. Experimental results on the VSB100 dataset [14] showed
that the proposed algorithm outperforms the state-of-the-art online video segmentation
algorithms [11–13] significantly.
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