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Abstract

A novel visual tracking algorithm using patch-based ap-
pearance models is proposed in this paper. We first divide
the bounding box of a target object into multiple patches
and then select only pertinent patches, which occur repeat-
edly near the center of the bounding box, to construct the
foreground appearance model. We also divide the input im-
age into non-overlapping blocks, construct a background
model at each block location, and integrate these back-
ground models for tracking. Using the appearance models,
we obtain an accurate foreground probability map. Finally,
we estimate the optimal object position by maximizing the
likelihood, which is obtained by convolving the foreground
probability map with the pertinence mask. Experimental re-
sults demonstrate that the proposed algorithm outperforms
state-of-the-art tracking algorithms significantly in terms of
center position errors and success rates.

1. Introduction
Object tracking is a fundamental vision tool to facil-

itate various higher-level applications, including surveil-

lance, object recognition, event analysis, and intelligent

robotics. Even though many attempts have been made to

develop efficient tracking algorithms, it is still challenging

to detect and trace objects with illumination variations, pose

changes, complex motions, and background clutters in a re-

liable manner. For robust tracking under these adverse con-

ditions, it is essential to design effective appearance models.

Recently, many appearance models have been pro-

posed [22, 24], and tracking algorithms can be roughly

divided into two categories according to their appearance
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models: bounding box models [3, 4, 7, 9] and patch mod-

els [5, 11, 12, 14, 16]. A bounding box model uses the entire

bounding box of a target object to extract object features,

such as color, texture, and motion. It is sensitive to rapid

and severe changes in structural appearance, which often

occur in dynamic sequences, e.g. movies and sports videos.

On the other hand, a patch model divides the bounding box

into multiple smaller patches and extracts features for each

patch separately. It can address appearance changes in a

target object more flexibly, but it may decrease tracking ac-

curacy when some foreground patches are not clearly dis-

tinguishable from background patches.

In this paper, we propose novel appearance models for

both foreground and background to achieve reliable and ac-

curate tracking. We first decompose the bounding box in the

first frame into multiple patches and then select only per-

tinent patches, whose color histograms are frequently ob-

served near the center of the bounding box, to construct

the foreground appearance model. Moreover, we design

multiple background appearance models to represent color

histograms locally and adaptively. Then, by exploiting the

foreground and background appearance models, we obtain

the foreground probability map. Finally, we determine the

optimal object position by convolving the foreground prob-

ability map with the pertinence mask, which records the

likelihood that each pixel location within the bounding box

belongs to the target object. This work has the following

contributions:

1. Pertinent patch selection for an accurate foreground

appearance model.

2. Localized multiple background appearance models.

3. Convolution scheme between the foreground proba-

bility map and the pertinence mask to suppress back-

ground clutters.

The rest of the paper is organized as follows: Section 2

summarizes related work. Section 3 overviews the proposed

algorithm in the Bayesian framework. Section 4 proposes
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the appearance models, and Section 5 describes the tracking

process. Section 6 presents experimental results. Finally,

Section 7 draws conclusions.

2. Related Work

Histogram models: Comaniciu et al. [7] proposed a

nonrigid object tracking algorithm, which detects a target

object to minimize the Bhattacharyya distance between the

color histograms of reference and target bounding boxes.

Their histogram-based appearance model, however, is sen-

sitive to occlusions, since it loses spatial information. To al-

leviate this drawback, Adam et al. [1] divided the reference

bounding box into multiple patches to extract patch-based

histograms separately. He et al. [10] also decomposed a tar-

get object into overlapping regions, and constructed a his-

togram for each region using different weights of pixels.

Local part tracking: Hua and Wu [11] tracked local

parts of a target object independently, and reduced the false

detection rate using the relationships among the local parts.

Nejhum et al. [19] approximated a target object with a small

number of rectangular blocks, tracked, and refined the block

positions based on the object contour. Kwon and Lee [14]

employed a star model to connect local patches to the object

center. Čehovin et al. [5] proposed a coupled-layer model,

which combines local appearance with global appearance

to describe a target object. They connected local patches

using a triangulated mesh. Also, Yao et al. [23] proposed

an online learning algorithm to exploit the relation between

an entire object and its local patches implicitly.

Patch-based appearance models: Tang and Peng [20]

employed patch models in two scales: large scale patches

are used to discard unreliable small scale patches, and small

scale patches are used to estimate the confidence of each

input patch. In [16, 12], sparse dictionaries are used to de-

scribe patches in a bounding box. Liu et al. [16] measured

the similarity between two objects, based on the sparse co-

efficient histograms of the patches within those objects. For

more accurate tracking, Jia et al. [12] proposed an align-

ment pooling algorithm, which used sparse coefficients di-

rectly, instead of histograms or kernel densities, to measure

the similarity. These algorithms, however, consider fore-

ground appearance models only, and thus may fail when the

background contains a region similar to the target object.

Foreground probability (or confidence) map: Avi-

dan [3] proposed the ensemble classifier to estimate a fore-

ground probability map, on which the mean shift localiza-

tion is performed to detect a target. Wang et al. [21] seg-

mented an image into superpixels, and estimated the fore-

ground probabilities of the superpixels. They adopted the

Bayesian tracking framework [2] to track a target based on

the probability map.

3. Bayesian Tracking
We adopt the Bayesian framework [2] to formulate the

proposed tracking algorithm. Let xt and zt be the state and

the observation at time t, respectively. The posterior prob-

ability of xt given the observations z1:t = {z1, z2, . . . , zt}
can be written as

p(xt|z1:t) = αtp(zt|xt)p(xt|z1:t−1), (1)

where αt is a normalization term, p(zt|xt) is the likelihood,

and p(xt|z1:t−1) is the prior probability of the state xt. We

define the state xt as the position of the bounding box Ωt

for the tracked object at time t. The proposed tracking algo-

rithm finds the optimal x̂t to maximize the posterior proba-

bility of the position given the appearance information z1:t,

x̂t = argmax
xt

p(xt|z1:t). (2)

The prior probability of xt is assumed to be uniformly

distributed within a search region, given by

p(xt|z1:t−1) =

{
1
N if xt ∈ Rt,
0 otherwise,

(3)

where Rt is the search region, centered at the estimated po-

sition x̂t−1 of the bounding box Ωt−1 at time t − 1. Also,

N is the number of candidate positions in Rt. Hence, max-

imizing the posterior in (2) is equivalent to maximizing the

likelihood p(zt|xt). Thus, the likelihood design is one of

the most important factors in object tracking.

4. Patch-Based Appearance Models
Our appearance models use an HSV color histogram

with 48 bins: 16 bins for each channel of the hue, satura-

tion, and value. However, extracting a color histogram from

an entire bounding box may lose local color information,

leading to inaccurate tracking [7]. We propose patch-based

appearance models for the foreground and the background,

respectively, which obtain a color histogram locally from

each image patch smaller than the bounding box.

4.1. Foreground Appearance Model

In the first frame, the bounding box Ω1 of a foreground

object is provided manually or by an object detection algo-

rithm. Figure 1(a) illustrates the bounding box (red), which

contains the object to be tracked (blue). We decompose

the bounding box Ω1 into non-overlapping patches of size

8 × 8 and obtain a color histogram from each patch. In

Figure 1(a), the bounding box contains background infor-

mation as well, degrading the foreground probability map

in Figure 1(b). To construct a more accurate foreground

appearance model, we select only pertinent patches, which

convey the foreground information, from the bounding box

automatically.
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Figure 1. Pertinent patch selection: All patches in the bounding

box in (a) are used to obtain the foreground probability map in (b),

whereas only pertinent patches in (c) are used to obtain the better

map in (d). The bounding box is shown in red, the selected patches

in green, and the object to be tracked in blue, respectively.

We observe that foreground patches tend to be near the

center of the bounding box, whereas background patches

near the box boundary. Moreover, even when a background

patch is located near the center, it often has similar patches

in terms of appearance near the boundary. Based on these

observations, we assign a pertinence score to each patch.

The notion of pertinence is related to the saliency based on

the histogram contrast [6]. In [6], the saliency of a pixel

is proportional to its rarity, which is defined as the sum of

the differences from the pixel to the other pixels. On the

contrary, the proposed pertinence score of a patch represents

the frequency of the patch appearance within the bounding

box.

We define a shrunken region ΩS
1 and an expanded region

ΩE
1 , which have the same center as the bounding box Ω1.

When the size of Ω1 is w × h, those of ΩS
1 and ΩE

1 are

0.6w × 0.6h and (w + 16) × (h + 16), respectively. We

decompose the expanded region ΩE into non-overlapping

patches of size 8× 8 and obtain their color histograms. We

then compute the saliency sE(i) of the ith patch in Ω1, with

respect to the expanded region ΩE
1 , as

sE(i) = min

⎧⎨
⎩

K∑
j=1

‖c(i)− cE(j)‖
⎫⎬
⎭ , (4)

where c(i) is the color histogram of the ith patch in Ω1, and

cE(j) is the color histogram of the jth selected patch from

ΩE
1 . Note that sE(i) minimizes the difference between c(i)

and the selected cE(j)’s. Therefore, sE(i) is the sum of the

distances from c(i) to its K nearest neighbor histograms

within the expanded region ΩE
1 .

Similarly, we compute the saliency sS(i) of the ith patch

in Ω1, with respect to the shrunken region ΩS
1 ,

sS(i) = min

⎧⎨
⎩

K∑
j=1

‖c(i)− cS(j)‖
⎫⎬
⎭ , (5)

where cS(j) is the color histogram of the jth selected patch

from ΩS
1 . Note that the ith patch is likely to be a foreground

one when sS(i) is small. This is because a foreground patch

tends to have many similar patches within ΩS
1 . In contrast,

a background patch often has a large saliency sS(i).
Next, we compute the pertinence score ψ(i) for the ith

patch in Ω1 as

ψ(i) =
sE(i)

sS(i)
. (6)

Note that 0 ≤ ψ(i) ≤ 1, since ΩS
1 ⊂ ΩE

1 and thus

sS(i) ≥ sE(i). When the ith patch contains the background

information, sE(i) is usually much smaller than sS(i). In

general, a background patch has similar patches in the ex-

panded region, but not in the shrunken region. In contrast,

when the ith patch contains the foreground information,

sE(i) and sS(i) tend to be similar, and the pertinence score

ψ(i) is near 1. Therefore, the pertinence score ψ(i) indi-

cates the likelihood that the ith patch belongs to the fore-

ground object.

If K in (4) or (5) equals the number of all patches in

ΩE
1 or ΩS

1 , sE(i) or sS(i) becomes the histogram con-

trast [6]. However, when K becomes large, some small

regions within the foreground object may yield larger sS

and small pertinence scores. Therefore, we fix K = 4.

We select the ith patch as pertinent patch, when ψ(i) >
γ. We set γ = 0.56. To remove outliers from the per-

tinent patch selection, we group the selected patches into

connected components. Then, we eliminate the connected

components whose sizes are smaller than the quarter of the

largest component. In Figure 1(c), green patches represent

pertinent ones. The pertinent patch selection improves the

accuracy of the foreground probability map, as shown in

Figure 1(d).

4.2. Multiple Background Models

The patch-based model has the advantages in handling

photometric and geometric changes in a target object, but

also the weakness that background patches are less dis-

tinguishable from foreground patches with a smaller patch

size. The conventional bounding box models [3, 9] con-

struct a single background model. However, in the proposed
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Figure 2. Background model construction: For blocks within the

bounding box Ω1, the background models are imported from the

nearest available blocks, i.e. B2 from B1, and B3 and B4 from B5.

patch-based approach, the single background model does

not provide sufficient information for the tracker to separate

background patches from foreground ones. Therefore, we

propose using multiple background models.

We divide an input image into non-overlapping blocks

of size 8 × 8 and construct a background model at each

block location. Let Bj denote the background model for the

jth block location, which maintains recent color histograms

observed at that location. In the first frame, Bj is initialized

with the color histogram of the jth block, if it is outside

the bounding box Ω1. On the other hand, if the jth block

is within Ω1, Bj is initialized with the color histogram of

the nearest available block. For example, in Figure 2(a), the

background models B2, B3, and B4 import the background

color histograms from the nearest available blocks outside

Ω1: B2 from B1, and B3 and B4 from B5.

From the second frame, we update the background mod-

els according to tracking results. After estimating the loca-

tion of the bounding box Ωt, we update the models only

for the blocks outside Ωt. We add the color histograms

of those blocks into the corresponding background models,

which are implemented as queues. Each queue keeps ten

histograms, and the oldest histogram is discarded when a

new histogram is added.

5. Tracking

At time t, we define a search region Rt, which includes

the bounding box Ωt−1 obtained at time t − 1. Then, we

estimate the foreground probability of each pixel withinRt,

by employing the foreground and background models. We

estimate the likelihood p(zt|xt) in (1), by convolving the

foreground probability map with the pertinence mask. Fi-

nally, we obtain the optimal position x̂t of the bounding box

Ωt, which maximizes the likelihood p(zt|x̂t)

5.1. Foreground Probability

Suppose that the size of Ωt−1 is w× h. Then, we set the

size of the search regionRt to (w+2δ)× (h+2δ), where δ
is set to 30 in this work. We divide Rt into non-overlapping

patches of size 8 × 8. We extract the input color histogram

cmin from the mth patch Pm. Among the foreground his-

tograms of the pertinent patches, we find the two nearest

histograms c1f and c2f to cmin in the feature space, using the

randomized k-d trees [17]. We also employ the cross-bin

metric [15] to measure the distance between histograms to

reduce the effects of quantization errors in the histogram

construction. Then, we compute the foreground distance df
as the average of the two nearest distances.

To compute the background distance db, we employ only

the 25 local background models, which are geometrically

close to the mth patch Pm, instead of using all background

models. Similarly to df , we compute the background dis-

tance db as the average distance from the input histogram

cmin to the two nearest histograms c1b and c2b in the 25 back-

ground models.
Consequently, the foreground probability of each pixel u

in Pm is given by

Γ(u) =

(
db

df + db

)2

. (7)

We normalize Γ(u) into the range of [0, 1], and then set

Γ(u) = 0 when the normalized value is smaller than 0.9.

5.2. Pertinence Masking for Likelihood Estimation

We may select the position xt, which maximizes the

sum of the foreground probabilities within the correspond-

ing bounding box, as in [3]. This approach is effective,

when the bounding box includes only foreground pixels,

as shown in Figure 3(a). However, when the bounding

box includes some background pixels with relatively large

foreground probabilities, as shown in Figure 3(b), it may

yield an inaccurate result. Therefore, we suppress the fore-

ground probabilities of those background pixels using the

pertinence maskMt in Figure 3(c).

The pertinence mask Mt is defined as the window of

foreground probabilities, which is updated at time t − 1. It

has the same size as the bounding box. Then, we compute

the likelihood p(zt|xt) by

p(zt|xt)

=
1

|Mt|
∑
k

(
Γ(xt + k)Mt(k) + Γ̄(xt + k)M̄t(k)

)
,

(8)

where |Mt| is the number of pixels within the mask, k de-

notes the relative position in Mt, Γ̄(·) = 1 − Γ(·), and

M̄(·) = 1 −M(·). The first term Γ(xt + k)Mt(k) in (8)
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Figure 3. Likelihood estimation using the pertinence mask: Fore-

ground and background pixels are shown in blue and green, re-

spectively. The numbers are the foreground probabilities. The

bounding box is at the correct position in (a), whereas the bound-

ing box is drifted incorrectly due to the background pixels with

high probabilities in (b). The pertinence mask Mt in (c) prevents

this drift in (d).

counts valid foreground probabilities, matched with the per-

tinence mask, while the second term Γ̄(xt + k)M̄t(k) im-

plicitly gives penalties to foreground probabilities on non-

pertinent pixel locations. Using the pertinence mask, we

can track the object more reliably, as shown in Figure 3(d).

The foreground probabilities of pixels in a target object

vary at each frame. When the tracked position x̂t satisfies

p(zt|x̂t) > 0.75, we update the pertinence mask Mt to

Mt+1 via

Mt+1(k) = (1− λ)Mt(k) + λΓ(x̂t + k) (9)

where λ is an update factor. It is fixed to λ = 0.0005. If

the tracked position does not satisfy the condition,Mt+1 =
Mt.

6. Experimental Results
We report the performance of the proposed algorithm

on ten test sequences: “Liquor,” “Box,” “Board,” “Lem-

ming,” [18] “Basketball,” “Skating2,” [13] “Bolt,” “Bird2,”

“Girl,” [21] and “Occlusion1” [1], whose sample frames

are shown in Figure 4. We compare the proposed algo-

rithm with four state-of-the-art trackers: STRUCK tracker

(ST) [9], superpixel tracker (SPT) [21], compressive tracker

(CT) [25], and local histogram tracker (LHT) [10]. We use

illumination invariant features for LHT, since these features

yield better tracking results than intensity features. The

proposed algorithm is implemented in C++ without opti-

mization, and achieves the average processing speed of 3.4

frames per second on a computer with a 3.3 GHz processor

and 8 Gbyte RAM.

Figure 5 compares the tracking accuracy of the pro-

posed algorithm with those of the conventional algorithms,

in terms of center position errors. A center position er-

ror is defined as ‖xg − x̂‖, where xg is the center posi-

tion of the ground truth bounding box and x̂ is its esti-

mated position by a tracker. The proposed algorithm pro-

vides smaller center position errors than the conventional

algorithms on most test sequences, especially on “Basket-

ball,” “Bird2,” “Bolt,” “Box,” “Lemming,” and “Skating2.”

In “Basketball,” “Bolt,” and “Skating2,” there are fast ob-

ject motions, but the proposed algorithm handles the rapid

structural changes effectively using patch-based foreground

appearance models. Moreover, in “Basketball,” “Bolt,” and

“Box,” the proposed algorithm alleviates the effects of back-

ground clutters by employing multiple background mod-

els. In “Board,” “Bird2,” and “Lemming,” the proposed

algorithm suppresses background information within ini-

tial bounding boxes, based on the pertinent patch selection

and masking, to provide reliable tracking results. Note that

the proposed algorithm yields relatively bad performance

on the beginning part of the “Girl” sequence. It is because

the girl is fully occluded by a man at the 111th frame.

Table 1 compares the average center position errors, as

well as the average success rates that are measured by the

PASCAL scoring method [8]. The PASCAL method de-

clares a frame as successful, when the overlapping area

between the ground truth bounding box and the estimated

bonding box is larger than half of the total area occupied

by the two boxes. The PASCAL method then counts the

number of successful frames. For each metric on each test

sequence, the best performance and the second best one are

marked in bold fonts and underlined, respectively. We ob-

serve that the proposed algorithm yields the center posi-

tion error of 20 pixels and the success rate of 85% on av-

erage, which outperforms the conventional algorithms sig-

nificantly.

Figure 6 compares the tracking results qualitatively. In

the “Board” and “Skating2” sequences, the initial bounding

boxes include large portions of the background. Therefore,

the conventional algorithms cannot track the target objects

correctly. In contrast, the propose algorithm constructs an

accurate foreground appearance model by excluding those

background patches, and tracks the objects reliably. Also,

some small parts in the background, which are similar to

a target object, degrade the tracking performance of the

conventional algorithms. For example, in “Basketball,” the

players wear the uniform with the same green color. Hence,

the conventional algorithms suffer from the ambiguity. On
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Basketball (576 432) Bird2 (720 400) Board (640 480) Bolt (640 360) Box (640 480)

Girl (640 480) Lemming (640 480) Liquor (640 480) Occlusion1 (352 288) Skating2 (640 352)

Figure 4. Test video sequences.

Basketball Bird2 Board

Bolt Box Girl

Lemming Liquor Skating2

Figure 5. Comparison of the center position errors of the proposed algorithm and the conventional algorithms: ST [9], SPT [21], CT [25],

and LHT [10].

the contrary, the proposed algorithm employs only local in-

formation to model the background appearance. Thus, we

can alleviate the effects of such ambiguity.

7. Conclusions

In this paper, we proposed a robust visual tracking al-

gorithm, which uses patch-based appearance models adap-

tively. We first introduced the notion of pertinence score

to construct a more accurate foreground model by exclud-

ing the background information within a bounding box. We

also proposed using multiple background models to repre-

sent different locations locally and adaptively. We gener-

ated a foreground probability map, which was then con-

volved with the pertinence mask to suppress the effects

of background clutters. Experimental results demonstrated

348734913491



Table 1. Comparison of the center position errors (CE) and the success rates (SR) [8] between the proposed algorithm and the conventional

algorithms: ST [9], SPT [21], CT [25], and LHT [10]. The best result is marked in bold fonts and the second best result is underlined.

Sequence CE SR

ST SPT CT LHT Proposed ST SPT CT LHT Proposed

Basketball 195 7 67 163 7 0.03 0.83 0.26 0.02 0.98
Bird2 54 11 22 12 12 0.36 0.97 0.53 0.93 0.9

Board 38 158 90 19 18 0.7 0.14 0.09 0.94 0.95
Bolt 392 7 352 8 13 0.02 0.67 0 0.78 0.56

Box 9 217 32 108 14 0.95 0.08 0.39 0.4 0.9

Girl 138 12 191 269 38 0.2 0.95 0.04 0.07 0.79

Lemming 21 89 125 83 13 0.8 0.59 0.19 0.47 0.88
Liquor 128 8 179 27 53 0.4 0.99 0.21 0.72 0.67

Skating2 142 278 73 17 15 0.19 0.03 0.16 0.7 0.83
Occlusion1 17 34 20 13 17 1 0.26 0.98 1 0.99

Average 113 82 115 72 20 0.47 0.55 0.29 0.6 0.85

that the proposed algorithm achieves more accurate tracking

results than the conventional state-of-the-art trackers.
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(a) Basketball

(c) Box

(d) Girl

(e) Lemming

(b) Board

(g) Skating2

(f) Liquor

Figure 6. Examples of the tracking results of the proposed algorithm and the conventional algorithms: ST [9], SPT [21], CT [25], and

LHT [10].
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