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ABSTRACT

A novel contrast enhancement algorithm based on the layered differ-
ence representation is proposed in this work. We first represent gray-
level differences at multiple layers in a tree-like structure. Then,
based on the observation that gray-level differences, occurring more
frequently in the input image, should be more emphasized in the
output image, we solve a constrained optimization problem to de-
rive the transformation function at each layer. Finally, we aggregate
the transformation functions at all layers into the overall transforma-
tion function. Simulation results demonstrate that the proposed algo-
rithm enhances images efficiently in terms of both objective quality
and subjective quality.

Index Terms— Contrast enhancement, layered difference rep-
resentation, histogram equalization, and constrained optimization.

1. INTRODUCTION

In spite of recent advances in imaging technology, a captured scene
often fails to preserve image details faithfully or yields poor con-
trast ratio due to the limited dynamic range. Contrast enhancement
techniques can alleviate these problems by increasing contrast ratios
and bringing out hidden details. Therefore, contrast enhancement is
an essential step in various image processing applications, such as
digital photography and visual surveillance.

Conventional contrast enhancement techniques can be catego-
rized into global and local approaches. A global approach derives a
single transformation function, which maps input pixel intensities to
output pixel intensities, and applies it to all pixels in an entire image.
Gamma correction, based on the simple power law, and histogram
equalization (HE), which attempts to make the histogram of pixel
intensities as uniform as possible, are two popular global contrast
enhancement techniques [1]. A local approach, on the other hand,
derives and applies the transformation function for each pixel adap-
tively to the information in neighboring pixel values. However, in
general, a local approach demands higher computational complexity
and its level of contrast enhancement is harder to control. Therefore,
being more stable, global contrast enhancement techniques are more
widely used for general purposes than local ones.

Recently, several global techniques have been proposed to over-
come the drawbacks of HE, such as contrast overstretching, noise
amplification, or contour artifacts in output images. For example,
Wang and Ward [2] clamped large histogram values to a certain
threshold and then modified the resulting histogram using the power
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law. Arici et al. [3] constructed the histogram of an input image
adaptively to the image characteristics. Their algorithm reduces
large histogram values for smooth areas corresponding to back-
ground regions, in order to focus on the enhancement of foreground
objects. Lee et al. [4] employed a logarithm function to reduce large
histogram values more effectively, preventing the transformation
function from having too steep slopes. Celik and Tjahjadi [5] par-
titioned an input histogram by modeling the gray-level distribution
with a Gaussian mixture model, and then enhanced the contrast in
each partition. These recent global contrast enhancement techniques
attempt to manipulate the histogram of an input image, but there are
other features of the input image that can be effectively used for the
contrast enhancement.

In this work, we propose a novel global contrast enhancement
algorithm, based on the layered difference representation. We first
make an observation that gray-level differences, occurring fre-
quently in the input image, should be amplified in the output image
in order to enhance the contrast. We then represent output gray-level
differences and the transformation function in a tree-like layered
structure. Then, at each layer, we formulate a constrained optimiza-
tion problem for the contrast enhancement and obtain the difference
vector, which is equivalent to the transformation function. Finally,
we aggregate the information in the difference vectors at all layers
into the overall difference vector. Simulation results demonstrate
that the proposed algorithm yields higher image qualities than the
conventional contrast enhancement techniques [2, 3].

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed algorithm. Section 3 discusses experimental
results. Finally, Section 4 concludes the paper.

2. PROPOSED ALGORITHM

2.1. Layered Difference Representation

Since the human visual system is more sensitive to gray-level dif-
ferences between neighboring objects than to absolute gray-levels,
contrast enhancement can be achieved by emphasizing the differ-
ences. Thus, gray-level differences, which occur frequently in the
input image, should be amplified in the output image. We develop a
contrast enhancement algorithm based on this observation.

For the sake of notational simplicity, let us consider the typi-
cal 8-bit imaging system, i.e., the maximum gray-level is 255. Let
x = [x0, x1, · · · , x255]

T denote the transformation function that
maps gray-level k in the input image to gray-level xk in the output
image [4]. To derive a desirable transformation function, we intro-
duce the layered difference representation. Suppose that a pair of ad-
jacent pixels in the input image have gray-levels k and k + l. Then,
they are mapped to gray-levels xk and xk+l in the output image. The
difference variable dlk at layer l is then defined as

dlk = xk+l − xk for 0 ≤ k ≤ 255− l. (1)



Fig. 1. The transformation function x = [x0, x1, · · · , x255]
T and

the difference variables dlk’s in a tree-like pyramidal structure.

Notice that the input gray level difference l between k and k + l is
mapped to the output gray-level difference dlk.

Let h(k, k+ l), which is referred to as the 2D histogram of gray-
level pairs, denotes the number of pairs of adjacent pixels with values
k and k + l in the input image. Different types of neighborhood can
be employed, but the simple 4-adjacency is used in this work. A
large h(k, k+ l) indicates that the gray-level pair (k, k+ l) appears
frequently in the input image. In such a case, the difference variable
dlk should be large, so that those frequent pairs have a large gray-
level difference in the output image and thus the image contrast is
enhanced. In other words, dlk should be proportional to h(k, k + l)
for the contrast enhancement. Therefore, at each layer, we have the
desirable relationship

dlk = κl × h(k, k + l), (2)

where κl is a normalizing constant at layer l.
Our objective is to design the transformation function x that sat-

isfies the system of equations in (1) and (2). However, this system of
equations does not have an exact solution, and we develop an algo-
rithm to provide an approximate solution instead. Before describing
the algorithm, let us state two elementary properties of this system
of equations. Fig. 1 illustrates the transformation function x and the
difference variables dlk’s in a tree-like pyramidal structure.1

First, the transformation function x can be completely deter-
mined by the difference variables d1k’s at layer 1. Specifically,

xk =

k−1∑
i=0

d1i for 1 ≤ k ≤ 255, (3)

and x0 = 0 since the darkest level in the input image should be
mapped to the darkest level in the output to preserve the dynamic
range. Therefore, we can solve the system of equations in terms of
d1k’s and then reconstruct the transformation function using (3).

Second, the difference variables dlk’s at higher layers can be also
expressed by those d1k’s at layer 1. From (1), we have

dlk =

k+l−1∑
i=k

d1i . (4)

In other words, in the tree-like structure in Fig. 1, each difference
variable dlk at layer l is equal to the sum of its descendants at layer 1.
Thus, the difference variables dlk’s have a strong structure across lay-
ers. On the other hand, the 2D histogram values, h(k, k + l)’s, do
not have such a strong structure. Thus, we cannot satisfy the propor-
tional relationships in (2) exactly, and should obtain an approximate
solution.

1It is not a tree, since two parents cannot have a common child in a tree.

2.2. Intra-Layer Optimization

Given the histogram h(k, k+l) of the input image, we should decide
the difference variables d1k’s at layer 1, which satisfy the system of
equations (2) and (4). However, as mentioned previously, the system
of equations does not have an exact solution due to the strong struc-
ture of dlk’s across layers. Therefore, we first ignore the inter-layer
dependencies, and solve the system of equations at each layer sep-
arately. In other words, for each fixed layer index l, we obtain and
solve the reduced system of equations (2) and (4). We then aggregate
the separate solutions for distinct layers to form the overall solution,
as will be described in Section 2.3.

Let us describe how to choose the normalizing constant κl in (2)
first. By summing up the equalities in (2) for all possible k’s at layer
l, we have

κl =

∑255−l
k=0 dlk∑255−l

k=0 h(k, k + l)
. (5)

The numerator
∑

k d
l
k can be approximated as follows. At layer 1,∑

k d
1
k = x255 = 255, since the maximum gray-level in the in-

put should be mapped to the maximum gray-level in the output. At
layer 2, since d2k = d1k + d1k+1 from (4), we have∑

k

d2k = d10 + 2×
(
d11 + · · ·+ d1253

)
+ d1254

≃ 2×
(
d10 + · · ·+ d1253

)
≃ 2× 254, (6)

by approximating the difference variables d1k’s to their average val-
ues, which are equal to 1. Similarly,

∑
k d

l
k ≃ l · (256 − l). Then,

from (2) and (5), we have

dlk = l · (256− l) · h(k, k + l)∑255−l
i=0 h(i, i+ l)

. (7)

At each layer l, we compute dlk’s from the input histogram by
(7). Also, notice that, since each dlk is the sum of d1k’s in (4), we can
form the linear equation

Al yl = dl, (8)

where Al ∈ R(256−l)×255 is a binary matrix composed of 0 and 1,
yl = [d10, d

1
1, · · · , d1254]T is the difference vector to be determined,

and dl = [dl0, d
l
1, · · · , dl255−l]

T is the column vector, the elements
of which are computed from (7). For instance, at layer 2, the linear
equation A2y2 = d2 is given by

1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1





d10
d11
d12
...

d1253
d1254


=



d20
d21
d22
...

d2252
d2253


. (9)

In this way, at each layer l, we obtain the difference vector yl by
solving the constrained optimization problem,

minimize ∥Alyl − dl∥2 (10)
subject to yl ≽ 0, (11)

1Tyl = 255, (12)

where 1 denotes the column vector, all elements of which are 1.
Also, a ≽ 0 means that all elements in vector a are greater than or
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Fig. 2. The difference vector yl (solid) is convolved with a Gaussian
kernel to yield the smoothed version ỹl (dashed).

equal to 0. The inequality in (11) and the equality in (12) are the
constraints to guarantee that the transformation function is mono-
tonically increasing and preserves the dynamic range, respectively.
Since (10) is a quadratic cost function of yl, the optimization prob-
lem can be efficiently solved by various techniques. In this work, we
employ the active-set method [6] to obtain the difference vector yl

at each layer l.

2.3. Inter-Layer Aggregation

By performing the intra-layer optimization at each layer, we obtain
255 difference vectors yl, 1 ≤ l ≤ 255, respectively. We aggre-
gate the information in these difference vectors to form an overall
difference vector ȳ.

Before the aggregation, we first smooth each yl. The smoothing
is necessary, since h(k, k + l) in (7) generally becomes sparser as l
gets larger. Thus, at a large l, most elements in dl are zero, which
also leads to a sparse solution yl consisting of most zeros and a few
high peaks. Fig. 2 shows exemplar yl’s at l = 4 and 32. Note that, at
l = 32, most elements are zero except for the two high peaks. This
causes artifacts, such as contrast overstretching and noise amplifica-
tion, as in the conventional HE. Therefore, to reduce these artifacts,
we convolve yl with a Gaussian kernel,

ỹl = yl ∗ gl, (13)

where ∗ denotes the convolution operation, and gl is the Gaussian
kernel at layer l. At a high l, the kernel size should be big to effec-
tively remove a sudden peak value and obtain a smooth difference
vector. Thus, in this work, we set both the size and the variance of
the Gaussian kernel to be l. In Fig. 2, the dashed curves depict the
smoothed difference vectors.

Next, we aggregate ỹl’s at all layers to yield the overall differ-
ence vector ȳ = [d̄10, d̄

1
1, · · · , d̄1254]T . Note that we obtain ỹl from

the histogram h(k, k+l) of pixel pairs, whose gray-level differences
are l. It is hence reasonable to assume that the reliability of ỹl is pro-
portional to sl =

∑
k h(k, k+ l), which is the total number of pixel

pairs with gray-level differences l. Therefore, we set ȳ to be the
weighted average of ỹl’s, given by

ȳ =
255∑
l=µ

log
( sl
10ρ

+ 1
)
× ỹl (14)

where ρ and µ are user-controllable parameters. Since sl tends to
be exponentially decreasing, we use the logarithm function with the

Table 1. Objective assessment of contrast enhancement.
Input WTHE WAHE Proposed

AMBE - 6.482 7.647 5.208
DE 2.154 2.144 2.135 2.113

EME 9.878 9.485 9.265 12.811
PixDist 26.315 33.164 32.694 34.125

parameter ρ to take into account the information at high layers, as
well as that at low layers, in the aggregation. Moreover, at very low
l’s, although the histogram values h(k, k+l)’s are high, those obser-
vation data are often corrupted due to noise components in the input
image and hence are not reliable. Thus, by setting the parameter µ,
we discard the first few ỹl’s in the aggregation step. In this work, we
fix ρ and µ to 10 and 3, respectively.

Finally, we obtain the transformation function x from the overall
difference vector ȳ via

xk =

k−1∑
i=0

d̄1i for 1 ≤ k ≤ 255. (15)

3. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm on 27 test
images from the Kodak Lossless True Color Image Suite2 and the
USC-SIPI database3. We compare the proposed algorithm with
the conventional methods in [2] and [3], which are referred to as
weighted thresholded histogram equalization (WTHE) and weighted
approximated histogram equalization (WAHE), respectively. Param-
eters r in WTHE and g in WAHE is fixed to 0.3 and 1.5, respectively,
to achieve the best subjective qualities on the test images.

First, we assess the enhancement performance objectively using
four quality metrics: absolute mean brightness error (AMBE) [3],
discrete entropy (DE) [3], measure of enhancement (EME) [3], and
PixDist [7]. Table 1 lists the average performance on the 27 test im-
ages. AMBE measures the absolute difference between input and
output means. A lower value implies that the corresponding algo-
rithm well preserves the mean brightness of an input image. Note
that the proposed algorithm incurs the lowest brightness change. DE
measures the amount of information in an image, where a higher
value indicates that the image contains more randomness and vari-
ations. The proposed algorithm has a poor rank for DE. However,
since DE is calculated from the probability mass function of gray-
levels, it can not faithfully assess the enhancement of image struc-
tures. EME approximates the average contrast in an image by divid-
ing the image into non-overlapping blocks, computing a score based
on the minimum and maximum gray-levels in each block, and av-
eraging them. Since the proposed algorithm enhances local details
efficiently, it yields the highest EME score. PixDist computes the
average mutual intensity difference for all pixel pairs in an image.
The proposed algorithm provides the best performance in terms of
the PixDist measure as well.

Next, we compare the qualities of output images subjectively.
In Fig. 3, only the result images on “Windows,” “Hats,” “Girl,” and
“House” are presented because of the page limitation. The origi-
nal images look dull due to low contrast ratios. WTHE is based
on HE, but it sets the limit on an input histogram to avoid contrast

2http://r0k.us/graphics/kodak/
3http://sipi.usc.edu/database/
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Fig. 3. Contrast enhancement results on the test images “Windows,” “Hats,” “Woman,” “Girl,” and “House”: (a) Original input images, (b)
WTHE [2], (c) WAHE [3], and (d) the proposed algorithm.

overstrectching. We see that it provides satisfactory results without
annoying artifacts. WAHE exploits the spatial variance information
to enhance the contrast on textured regions more efficiently than on
homogeneous regions. Thus, it enhances object details by sacrificing
background details. On the other hand, the proposed algorithm uses
the occurrence frequency of gray-level differences to enhance the
output image contrast. Therefore, the proposed algorithm improves
the contrast especially on repeated patterns or local details, such as
cracks on the bricked wall in “Windows,” wrinkles and letters on the
hats in “Hats,” and tree leaves and wall patterns in “House.” As a re-
sult, we see that the proposed algorithm offers clear image structures
and vivid colors by improving local details.

4. CONCLUSIONS

We proposed a novel contrast enhancement algorithm using the lay-
ered difference representation, in which the statistical information
of gray-level differences between neighboring pixels in an input im-
age is exploited to control output gray-level differences. We derived
the relationship between difference variables and image contrast and
formulated the contrast enhancement as a constrained optimization
problem. By solving the problem at each layer, the proposed algo-
rithm obtains the difference vector. Then, the proposed algorithm
aggregates the difference vectors at all layers into the overall differ-
ence vector. Simulation results demonstrated that the proposed algo-
rithm provides better image qualities than the conventional methods.
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