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Abstract—A novel contrast enhancement algorithm based on
the layered difference representation of 2D histograms is pro-
posed in this work. We attempt to enhance image contrast by
amplifying the gray-level differences between adjacent pixels. To
this end, we obtain the 2D histogram h(k, k + l) from an input
image, which counts the pairs of adjacent pixels with gray-levels
k and k+ l, and represent the gray-level differences in a tree-like
layered structure. Then, we formulate a constrained optimization
problem based on the observation that the gray-level differences,
occurring more frequently in the input image, should be more
emphasized in the output image. We first solve the optimization
problem to derive the transformation function at each layer. We
then combine the transformation functions at all layers into the
unified transformation function, which is used to map input gray-
levels to output gray-levels. Experimental results demonstrate
that the proposed algorithm enhances images efficiently in terms
of both objective quality and subjective quality.

Index Terms—Image enhancement, contrast enhancement, his-
togram equalization, 2D histogram, layered difference represen-
tation, and constrained optimization.

I. INTRODUCTION

In spite of recent advances in imaging technology, captured
images often fail to preserve scene details faithfully or yield
poor contrast ratios due to limited dynamic ranges. Contrast
enhancement (CE) techniques can alleviate these problems and
bring out hidden details. CE is an essential step in various
image processing applications, such as digital photography,
video communications, and visual surveillance, and a lot of
researches have been made to develop efficient CE techniques.

Conventional CE techniques can be categorized into global
and local approaches. A global approach derives a single
transformation function, which maps input intensities to output
intensities, and applies it to all pixels in an entire image. For
example, the gamma correction based on the simple power
law is a well-known CE technique. On the other hand, a local
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approach, e.g. [2]–[6], derives and applies the transformation
function for each pixel adaptively according to the information
in a local neighborhood. However, in general, a local approach
demands higher computational complexity and its level of CE
is harder to control. Therefore, being more stable, global CE
techniques are more widely used in practical applications.

Histogram specification (HS) [7], which attempts to obtain
the output histogram of a desired shape, is a global CE
technique. However, there is no obvious choice for the desired
histogram, since natural images exhibit significantly different
histogram characteristics from one another. Thus, simple math-
ematical distributions, such as uniform, Gaussian, or exponen-
tial, are typically used as the desired histograms. Especially,
when the uniform distribution is used, HS is referred to as
histogram equalization (HE) [7]. HE is one of the most widely
adopted techniques to enhance low contrast images due to its
simplicity and effectiveness. However, it has some drawbacks,
such as contrast over-stretching, noise amplification, or con-
tour artifacts. Various researches have been made to overcome
these drawbacks. For example, several algorithms [8]–[10]
divide an input histogram into sub-histograms and equalize
them independently to reduce the brightness change between
input and output images. Also, histogram modification (HM)
techniques, which manipulate an acquired histogram before
the equalization, have been introduced. Wang and Ward [11]
clamped large histogram values and then modified the resulting
histogram using the power law. Lee et al. [12] employed
a logarithm function to reduce large histogram values ef-
fectively, preventing the transformation function from having
too steep slopes. Several researches also have been carried
out to extend the conventional HE to the multidimensional
histograms of color images. Naik and Murthy [13] generalized
HE to enhance the contrast of color images and developed an
algorithm to avoid the gamut problem during the enhancement.
Han et al. [14] proposed the iso-luminance HE algorithm for
enhancing RGB images, which achieves the uniform histogram
of the luminance channel.

These global CE techniques [7]–[14] process the histograms
of input images to obtain output images. The histogram pro-
cessing has the advantages of straightforward implementation
and computational efficiency, since it achieves significant data
reduction. However, it discards the spatial information in
the unordered summarization process [15]. In other words,
the histogram cannot capture the joint relationships between
neighboring pixels. Recently, a few CE algorithms have been
developed to consider spatial image features by extending
the notion of the histogram. Arici et al. [16] constructed
the histogram of an input image adaptively to image char-
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Fig. 1. An overview of the proposed algorithm.

acteristics. They reduced large histogram values for smooth
areas corresponding to background regions to focus on the
enhancement of foreground objects. However, their algorithm
does not use the joint relationships between pixels explicitly
for the enhancement. Celik and Tjahjadi [17] constructed a
2D histogram, which recorded the numbers of gray-level pairs
in an input image, and modified it to emphasize large gray-
level differences. Then, they achieved CE by mapping the
diagonal elements of the 2D input histogram to those of the
2D modified histogram. However, their mapping scheme may
not handle large histogram values appropriately and may yield
over-stretching artifacts.

In this work, we propose a novel global CE algorithm based
on the layered difference representation (LDR). The proposed
algorithm also uses a 2D histogram, but adopts a different
theoretical approach. We first obtain the 2D histogram of
gray-level differences between neighboring pixels. We attempt
to amplify gray-level differences, occurring frequently in the
input image, to enhance the contrast. To this end, we represent
output gray-level differences and the transformation function
in a tree-like layered structure. This representation is called
the LDR. Then, at each layer, we formulate a constrained op-
timization problem for the enhancement and solve it efficiently
to obtain the difference vector. Finally, we aggregate the
difference vectors at all layers into a single unified difference
vector, which is equivalent to the transformation function.
Extensive experimental results demonstrate that the proposed
algorithm yields higher image qualities than the conventional
HE [7], the Arici et al.’s algorithm [16], and the Celik and
Tjahjadi’s algorithm [17].

The rest of this paper is organized as follows. Section II
describes the proposed algorithm, and Section III addresses
implementation details. Section IV discusses experimental
results. Finally, Section V concludes the paper.

II. PROPOSED ALGORITHM

We propose a CE algorithm based on the LDR. As shown
in Fig. 1, the proposed algorithm has two main components:
intra-layer optimization and inter-layer aggregation. We first
extract a 2D histogram h(k, k + l) from an input image,
by counting the pairs of adjacent pixels with gray-levels k
and k + l. In the intra-layer optimization, we obtain the
histogram vector hl at each layer l and use it to formulate a
system of linear equations. By solving the system, we obtain
the difference vector dl at layer l. Next, in the inter-layer
aggregation, we combine the difference vectors at all layers
into the unified difference vector d using the weighting vector
w. We then reconstruct the transformation function x from d
and transform the input image to the output image.

(a)

0 51 102 153 204 255
0

0.1

0.2

0.3

0.4

0.5

Input pixel value

N
or

m
al

iz
ed

 h
is

to
gr

am

(b)

0 51 102 153 204 255
0

0.1

0.2

0.3

0.4

0.5

Input pixel value

N
or

m
al

iz
ed

 h
is

to
gr

am

(c)

0 51 102 153 204 255
0

0.1

0.2

0.3

0.4

0.5

Input pixel value

N
or

m
al

iz
ed

 h
is

to
gr

am

(d)

0 51 102 153 204 255
0

0.1

0.2

0.3

0.4

0.5

Input pixel value

N
or

m
al

iz
ed

 h
is

to
gr

am

(e)

0 51 102 153 204 255
0

0.1

0.2

0.3

0.4

0.5

Input pixel value

N
or

m
al

iz
ed

 h
is

to
gr

am

(f)

Fig. 2. Comparative tests of the conventional algorithms and the proposed
algorithm on a synthetic input image: (a) the input image, (b) its normalized
histogram, and (c)∼(f) the output images and their normalized histograms,
obtained by HE [7], WAHE [16], CVC [17] and the proposed algorithm,
respectively.

A. Motivation

Since the human visual system (HVS) is more sensitive
to gray-level differences between neighboring pixels than to
absolute gray-levels [18], [19], we can achieve perceptual CE
by emphasizing the differences. However, most enhancement
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algorithms [4]–[14] focus on the first-order distribution of
absolute gray-levels in an image, without considering the
spatial placement of those gray-levels nor the joint gray-
level distribution of neighboring pixels. Therefore, these con-
ventional algorithms may fail to provide visually satisfying
images.

To clarify differences between the conventional algorithms
and the proposed algorithm, we perform tests on a synthetic
image in Fig. 2(a), which has four overlapping squares with
different gray-levels. As shown in the normalized histogram
in Fig. 2(b), the image does not exploit the full dynamic
range and its gray-levels are confined to the range of [51, 204].
To enhance the contrast, the gray-level distribution should
be stretched to the full dynamic range: the lowest and the
highest gray-levels in the input histogram should be mapped
to the minimum and the maximum gray-levels, respectively.
However, this cannot be achieved by the conventional algo-
rithms. HE [7] causes a steep slope in the transformation
function, when a histogram bin has a large value. In this
example, the lowest gray-level, 51, composes more than 40%
of the input image. HE hence makes the lowest gray-level even
brighter, degrading the quality of the output image in Fig. 2(c).
WAHE [16] in Fig. 2(d) alleviates the over-enhancement
problem in HE and maintains a similar dynamic range to
the input image. But, it fails to achieve further enhancement.
To the best of our knowledge, CVC [17] was the first CE
algorithm, which adopted a 2D histogram to use the contextual
information in an image, such as edges and object boundaries.
However, it does not fully exploit the relationship between
input gray-level differences and output gray-level differences.
Therefore, CVC reduces the contrast in Fig. 2(e).

On the contrary, the proposed algorithm considers the
statistics of gray-level differences, instead of absolute gray-
levels, and derives a desirable relationship between the 2D
histogram of the input image and the gray-level differences
in the output image. Consequently, the gray-level differences,
which occur frequently across the square boundaries in the
input image, are amplified in the output image to improve the
contrast. Fig. 2(f) shows that the proposed algorithm exploits
the full dynamic range and outputs a higher contrast image
than the conventional algorithms.

Let us describe the proposed algorithm in detail subse-
quently.

B. Layered Difference Representation

For the sake of notational simplicity, let us consider a typical
8-bit imaging system, in which the maximum gray-level is
255. Let x = [x0, x1, · · · , x255]

T denote the transformation
function, which maps gray-level k in the input image to
gray-level xk in the output image [12]. To derive a desirable
transformation function, we introduce the LDR. Suppose that
a pair of adjacent pixels in the input image have gray-levels k
and k + l. Then, they are mapped to gray-levels xk and xk+l

in the output image, respectively. The difference variable dlk
at layer l is then defined as

dlk = xk+l − xk for 0 ≤ k ≤ 255− l. (1)

Fig. 3. The layered difference representation (LDR): the transformation
function x = [x0, x1, · · · , x255]T and the difference variables dlk’s are
shown in a tree-like pyramidal structure.

Notice that the input gray-level difference l between k and
k + l is mapped to the output gray-level difference dlk.

Let the 2D histogram h(k, k + l) represent the number of
pairs of adjacent pixels with values k and k + l in the input
image. Different types of neighborhood can be employed,
but the simple 4-adjacency is used in this work. In many
histogram-based CE algorithms [8], [10], [11], [16], [17], [20],
the transformation function gets an extreme slope when a
histogram bin has a very large value. As a result, output images
are often degraded by the contrast over-stretching. Peak values
in the 2D histogram can cause similar over-enhancement. To
reduce such peaks and relax steep slopes, we modify the 2D
histogram using a logarithm function, which is monotonically
increasing and can decrease large values effectively. Note that
Lee et al. [12] also used a logarithm function to attenuate the
1-D histogram of an input image. Also, the order of adjacent
pixels is not important. Therefore, we obtain an unordered
logarithm-attenuated 2D histogram

hl
k = log (h(k, k + l) + h(k + l, k)) , 0 ≤ k ≤ 255−l. (2)

A large hl
k indicates that the gray-level pairs (k, k + l) or

(k + l, k) appear frequently in the input. In such a case, the
difference variable dlk should be large, so that those frequent
pairs have a large gray-level difference in the output. In
other words, dlk should be proportional to hl

k to improve the
output contrast. Therefore, at each layer, we have the desirable
relationship

dlk = κl × hl
k, 0 ≤ k ≤ 255− l, (3)

where κl is a normalizing constant at layer l.
Our objective is to design the transformation function x

that satisfies the system of equations in (1) and (3). However,
this system does not have an exact solution. We develop
an algorithm to provide an approximate solution instead.
Before describing the algorithm, let us state two elementary
properties of the system of equations. Fig. 3 shows the LDR,
which depicts the transformation function x and the difference
variables dlk’s in a tree-like pyramidal structure1.

First, the transformation function x can be completely deter-
mined by the difference variables d1k’s at layer 1. Specifically,

xk =
k−1∑
i=0

d1i for 1 ≤ k ≤ 255, (4)

1Precisely speaking, it is not a tree, since two parents cannot have a common
child in a tree [21].
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and x0 = 0 since the darkest level in the input should be
mapped to the darkest level in the output to preserve the
dynamic range. Therefore, we can solve the system of equa-
tions in terms of d1k’s and then reconstruct the transformation
function using (4).

Second, the difference variables dlk’s at higher layers also
can be expressed by those d1k’s at layer 1. From (1), we have

dlk =

k+l−1∑
i=k

d1i , 0 ≤ k ≤ 255− l. (5)

In the LDR in Fig. 3, each difference variable dlk at layer l is
equal to the sum of its descendants at layer 1. For instance,
from (1) and (4), the first element of difference variables at
layer 3 can be rewritten as

d30 = x3 − x0 = x3 − x2 + x2 − x1 + x1 − x0

= d12 + d11 + d10. (6)

Thus, the difference variables dlk’s have a strong structure
across layers. On the other hand, the 2D histogram values
hl
k’s do not have such a strong structure. Therefore, we cannot

satisfy the proportional relationships in (3) exactly and should
obtain an approximate solution instead.

C. Intra-Layer Optimization

Given the 2D histogram hl
k of the input image in (2), we

should decide the difference variables d1k’s at layer 1, which
satisfy the equations in (3) and (5). More specifically, by
considering the relationships in (3) at all layers and expressing
dlk’s in terms of the variables d1k’s via (5), we can construct
a system of linear equations. The system is over-determined,
since there are more observations hl

k’s than the variables d1k’s.
Also, each d1k should be nonnegative to ensure a monotonically
increasing transformation function x [12]. We can solve this
over-determined system with the nonnegative constraint based
on the nonnegative least squares (NNLS) technique [22].
However, as mentioned before, dlk’s have a strong structure
across layers. NNLS, which considers all layers in a single
system, hence yields an undesirable solution. Moreover, NNLS
is sensitive to magnitude variations in the 2D histogram. For
example, Fig. 4(a) shows the histogram hl

k for an input image
in Fig. 4(d). Histogram components around h1

35 and h1
139 are

much larger than the others. In the least squares optimization,
the sum of the squared errors is dominated by these large
components. As a result, the other histogram components
contribute little to the solution, and the difference variables in
Fig. 4(b) are irregular and noisy. Therefore, the transformation
function in Fig. 4(c) is not smooth and causes contour artifacts
in the output image in Fig. 4(e).

The example in Fig. 4 indicates that it is necessary to
process the information at each layer separately, instead of
considering all layers in a single system. In other words, we
ignore the inter-layer dependencies temporarily and solve the
system of equations at each layer separately. More specifically,
for each layer index l, we obtain and solve the reduced system
of equations in (3) and (5). We then aggregate the separate
solutions for different layers to form the overall solution, as
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Fig. 4. The enhancement of the “Eagle” image. For better evaluation of image
qualities, we recommend the readers to see this figure on display devices
rather than the printed version. (a) 2D histogram. (b) Difference vector. (c)
Transformation function. (d) Input. (e) NNLS. (f) Proposed.

will be described in Section II-E. Fig. 4(f) shows that the
proposed algorithm provides a higher quality image with less
contour artifacts than the NNLS technique.

At each layer l, dlk’s are determined by the 2D histogram
values hl

k’s via (3). Also, each dlk is the sum of d1k’s in (5).
Therefore, we can form a linear equation

Aldl = κlhl, (7)

where Al ∈ R(256−l)×255 is a binary matrix composed of 0
and 1, dl = [d10, d

1
1, · · · , d1254]T is the difference vector to be

determined, and hl =
[
hl
0, h

l
1, · · · , hl

255−l

]T is the column
vector representing the observed 2D histogram values at layer
l. For instance, at layer 2, the linear equation A2d2 = κ2h2

is given by

1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1





d10
d11
d12
...

d1253
d1254


= κ2



h2
0

h2
1

h2
2
...

h2
252

h2
253


.

(8)
In this way, at each layer l, we obtain the difference vector

dl by solving the constrained optimization problem:

minimize ∥Aldl − κlhl∥2 (9)
subject to dl ≽ 0, (10)

1Tdl = 255, (11)

where 1 and 0 denote the column vectors, all elements of
which are 1 and 0, respectively. Also, a ≽ 0 means that
all elements in vector a are greater than or equal to 0. The
inequality in (10) and the equality in (11) are the constraints
to guarantee that the transformation function is monotonically
increasing and preserves the dynamic range x255 = 255,
respectively [12].

Since (9) is a quadratic cost function of dl, various tech-
niques [23] can be employed to solve the optimization problem
in general. However, as the layer index l increases, the number
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of observations gets much less than the number of unknown
variables, so that the problem becomes ill-conditioned except
for the layer l = 1. Note that reasonable solutions can be found
assuming the sparsity of the solutions [24]. However, finding
the sparsest solutions is NP-hard [25], and the solution dl to
our problem cannot be sparse due to the constraints in (10) and
(11). Thus, instead of employing the sparse coding techniques,
we solve the intra-layer optimization problem by incorporating
additional equalities, which convert the original problem into
an over-determined one. Then, we obtain the solution to the
over-determined problem efficiently using the method of least
squares. Let us detail the solution in the subsequent section.

D. Solution to the Optimization Problem

The constrained optimization problem in (9)∼(11) cannot
be solved directly in its original form. However, fortunately,
assuming that the descendants of each dlk are equal to one
another, we can obtain the solution vector dl at each layer l.

Let us recall that, in the LDR, each difference variable dlk
can be expressed as the sum of its descendants at layer 1 in (5).
In addition to this relation, we assume that those descendants
have the same value. More specifically, given a difference
variable dlk, l > 1, we assume that its descendants at layer
1 satisfy

d1i = d1j for k ≤ i, j ≤ k + l − 1. (12)

This implies that the output transformation function should
increase linearly between xk and xk+l. By incorporating these
additional equalities in (12) into the optimization problem in
(9)∼(11), we can convert it into an over-determined system
and solve it using the method of least squares. Incorporating
these equalities is reasonable, since the transformation function
should be smooth to avoid artifacts in the output image.
Furthermore, in Section III, we will show that the smoothness
assumption also enables a computationally efficient solution.

From (3) and (5), the smoothness assumption can be written
as l equations, given by

d1k = · · · = d1k+l−1 =
κl

l
hl
k. (13)

Similarly, the linear equation in (7) can be decomposed into l
equations,

Al,1dl = · · · = Al,ldl =
κl

l
hl, (14)

where Al,i is a binary matrix of the same size as Al in (7).
The (j, i + j)th elements of Al,i are 1 and the others are 0.

For example, A2 in (8) is decomposed into two matrices as

A2,1 =



1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0


and

A2,2 =



0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1


. (15)

Since the difference vector dl should satisfy l linear equations
in (14) simultaneously, we can rewrite the linear equation in
(7) as

Bldl = ϕlgl, (16)

where ϕl =
κl

l and

Bl =

 Al,1

...
Al,l

 and gl =

 hl

...
hl

 . (17)

We converted the under-determined system in (7) into the
over-determined system in (16). Therefore, the optimization
problem in (9)∼(11) becomes the problem of determining the
difference vector dl, which minimizes the squared distance
∥Bldl−ϕlgl∥2 subject to the constraints in (10) and (11). We
solve this constrained optimization problem by minimizing the
Lagrangian cost function

J(dl) = ∥Bldl − ϕlgl∥2 + λl

(
1Tdl − 255

)
, (18)

where λl is a Lagrangian multiplier. By differentiating (18)
with respect to dl and setting it to zero, we obtain the optimal
difference vector

dl = ϕl

(
BT

l Bl

)−1 (
BT

l gl − µl1
)
, (19)

where the constant µl, satisfying the constraint in (11), is given
by

µl =
ϕl1

T
(
BT

l Bl

)−1
BT

l gl − 255

ϕl1T
(
Bl

TBl

)−1

1
. (20)

Whereas the equality constraint in (11) is satisfied by (20),
the non-negative constraint in (10) still depends on the choice
of the normalizing constant ϕl. As will be shown in Section
III, all elements in both

(
BT

l Bl

)−1 and BT
l gl in (19) are

non-negative. Therefore, notice from (19) that the non-negative
constraint is satisfied when min(BT

l gl) ≥ µl. Then, from (20),
we derive the possible range for ϕl, which is given by

0 < ϕl ≤ ϕmax
l (21)

=
255

1T
(
BT

l Bl

)−1
BT

l gl −min(BT
l gl) · 1T

(
Bl

TBl

)−1

1
.
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We have experimentally found that a larger ϕl provides higher
contrast. We hence fix the normalizing constant ϕl = ϕmax

l ,
or equivalently µl = min(BT

l gl). Then, the optimal difference
vector dl is given by

dl = ϕmax
l

(
BT

l Bl

)−1 (
BT

l gl −min(BT
l gl) · 1

)
. (22)

Notice that Bl is a sparse binary matrix, and gl is con-
structed by repeating the histogram vector hl. Therefore, the
number of operations for the matrix multiplication and the
matrix inversion can be reduced significantly, despite of the
large dimensions. We will describe the efficient implementa-
tion method in Section III.

E. Inter-Layer Aggregation

By performing the intra-layer optimization at each layer, we
obtain 255 difference vectors dl’s, 1 ≤ l ≤ 255. We aggregate
these difference vectors to form a unified difference vector d.

We obtain dl from the histogram hl =[
hl
0, h

l
1, · · · , hl

255−l

]T of pixel pairs, whose gray-level
differences are l, based on the relationship in (3). For a
typical input image, most elements in hl are zero when l is
large. In other words, hl becomes sparser as l gets larger.
Inspired by this observation, we assume that the reliability of
dl is proportional to sl =

∑
k h

l
k, which is the total number

of pixel pairs with the gray-level difference l. Fig. 5 shows
sl’s for various test images, which are normalized by the
maximum values. We see that, as l increases, the occurrence
frequency sl gets lower. We adjust the relative contribution of
dl based on its reliability sl. Therefore, dl at a higher layer
l has a less impact on the unified difference vector d.

We first normalize sl’s to wl’s by dividing it with the
maximum value and applying a simple power law function
with a user-controllable parameter α. Specifically, we obtain
the weighting vector w = [w1, w2, · · · , w255]

T , whose lth
element is given by

wl =

(
sl

maxi si

)α

. (23)

Then, we obtain the unified difference vector d by

d =
1

1Tw
Dw, (24)

where D ∈ R255×255 is a concatenated matrix whose ith
column is di. Finally, we obtain the transformation function
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Fig. 6. Impacts of the parameter α on output images: (a) weights wl’s, (b)
the transformation functions, and (c)∼(f) the corresponding output images at
α=0.5, 1.0, 2.0, and 5.0, respectively.

x from the unified difference vector d via

xk =

k−1∑
i=0

di for 1 ≤ k ≤ 255, (25)

and x0 = 0.
Fig. 6 illustrates the impacts of the parameter α. Fig. 6(a)

and (b) show wl’s and the transformation functions for an
input image, when α = 0.5, 1.0, 2.0, or 5.0, respectively.
Fig. 6(c)∼(f) are the corresponding output images. As α
gets smaller, dl’s at high layers are superposed with bigger
weights to form the unified difference vector d. This causes
the output images in Fig. 6(c) and (d) to lose details in dark
regions. On the other hand, by increasing α, we can enhance
the image qualities and provide fine details in Fig. 6(e) and
(f). We have experimentally found that α > 1.5 provides
satisfactory results, by weighting reliable vectors at low layers
more heavily in the aggregation process. Notice that α is the
only parameter in the proposed algorithm.

III. IMPLEMENTATION

The direct matrix computation of dl in (22) demands high
computation complexity due to the huge dimensions of Bl and
gl. However, as defined in (17), these matrices are constructed
by concatenating simple sub-matrices vertically. Thus, we can
rewrite BT

l Bl and BT
l gl in (22) as

BT
l Bl =

l∑
i=1

AT
l,iAl,i, (26)

BT
l gl =

l∑
i=1

AT
l,ihl = AT

l hl, (27)
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respectively.
Let us analyze each matrix multiplication to obtain a

simplified form. First, Al,i ∈ R(256−l)×255 is a rectangular
matrix, in which ith to (i+ 255− l)th columns constitute an
identity matrix Il ∈ R(256−l)×(256−l) and all the others are
zero columns. For instance, A5,2 = [0, I5,0,0,0]. Therefore,
AT

l,iAl,i is a diagonal matrix, in which ith to (i+ 255− l)th
diagonal elements are 1 and the others are 0. The sum
BT

l Bl =
∑l

i=1 A
T
l,iAl,i in (26) is also a diagonal matrix Ul,

in which the kth diagonal element ul
k is given by

ul
k = min(k, 256−l)−max(k−l, 0) for 1 ≤ k ≤ 255. (28)

In the case of l = 5, we have U5 =
diag

(
[1, 2, 3, 4, 5, 5, · · · ,5, 5, 4, 3, 2, 1]

)
.

Second, the matrix multiplication AT
l hl in (27) involves the

summation of l successive elements in hl. Let ml = AT
l hl

denote the resulting column vector. Then, its kth element ml
k

is given by

ml
k =

min(k−1,255−l)∑
i=max(k−l,0)

hl
i for 1 ≤ k ≤ 255. (29)

This summation can be interpreted as the convolution

ml = hl ∗ 1l, (30)

where 1l is the column vector of length l, whose elements are
all 1. Also, ∗ denotes the convolution operator.

Consequently, the original matrix multiplications in (26) and
(27) are simplified to

BT
l Bl = Ul, (31)

BT
l gl = ml, (32)

respectively. Finally, we have the compact representation of
(22), given by

dl = ϕmax
l U−1

l (ml −min(ml) · 1) . (33)

The inverse matrix U−1
l is also diagonal, and its kth diagonal

element is 1/ul
k. Therefore, the computational complexity to

calculate dl is reduced from O(K3) in (22) to O(K) in (33),
where K denotes the total number of gray-levels. Furthermore,
we can accelerate the processing further by computing U−1

l

in advance.

IV. EXPERIMENTAL RESULTS

We select test images of resolution 768 × 512 from the
Kodak Lossless True Color Image Suite [26], test images of
resolution 512 × 512 from the USC-SIPI Database [27], test
images of resolution 481×312 from the Berkeley Image Data
Set [28], and test images captured from commercial digital
cameras. In total, we use 600 test images. We compare the
proposed algorithm with the conventional HE [7], WAHE [16]
and CVC [17] algorithms. For WAHE, the parameter g is
fixed to 1.5 to yield the best overall image quality. For CVC,
the parameters are set to α = β = γ = 1

3 and the 7 × 7
neighborhood is used, as suggested in [17]. In the proposed
algorithm, the only controllable parameter is α in (23). We
fix α to 2.5 in all experiments to provide the best overall

TABLE I
OBJECTIVE QUALITY ASSESSMENT OF CE ALGORITHMS USING FOUR

METRICS: DISCRETE ENTROPY (DE) [29], MEASURE OF ENHANCEMENT
(EME) [30], ABSOLUTE MEAN BRIGHTNESS ERROR (AMBE) [10], AND

PIXDIST [31]. FOR EACH METRIC, THE BEST AND THE SECOND BEST
RESULTS ARE BOLDFACED AND UNDERLINED, RESPECTIVELY.

Input HE WAHE CVC Proposed
DE 7.11 6.91 7.05 7.04 7.07

EME 18.89 31.65 19.04 29.33 30.32
AMBE - 30.04 10.23 12.28 13.13
PixDist 28.08 42.21 33.93 34.75 36.70
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Fig. 7. Objective metric scores on 600 test images. From top to bottom, the
four rows plot the DE, EME, average brightness (AB), and PixDist scores.
The measurements from the input images are plotted in blue, whereas those
from the enhanced images are displayed in green. (a) HE. (b) WAHE. (c)
CVC. (d) Proposed.

performance in terms of the objective quality metrics, which
will be explained in Section IV-A. We process luminance
components only in the experiments. Specifically, given a
color image, we convert it to the YUV color space, and then
process only the Y component without modifying the U and
V components.

A. Objective Assessment

We assess the CE performance objectively using four quality
metrics: discrete entropy (DE) [29], measure of enhancement
(EME) [30], absolute mean brightness error (AMBE) [10], and
PixDist [31]. Table I lists the average performance on the 600
test images. For each metric, the best and the second best
results are boldfaced and underlined, respectively.

First, DE measures the amount of information in an image:
a high DE indicates that the image contains more variations
and conveys more information. Because of the information
processing inequality [32], no output image, processed by any
transformation function, can have a higher DE than the input
image. Thus, the proposed algorithm provides a lower average
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Fig. 8. CE results on the “Eagle” image: (a) input image, (b) HE, (c) WAHE, (d) CVC, (e) the proposed algorithm, and (f) the comparison of the corresponding
transformation functions.

DE than the input. But, the proposed algorithm conveys more
information than all the conventional algorithms.

Second, EME approximates the average contrast in an image
by dividing the image into blocks, computing a score based
on the minimum and the maximum gray-levels in each block,
and averaging the scores. The block size is set to 8 × 8
in this experiment. HE provides the best EME score, but it
causes over-stretching or over-enhancement artifacts, as will
be illustrated in the next section. Since CVC and the proposed
algorithm exploit the 2D contextual information and enhance
local details efficiently, they yield significantly better EME
scores than WAHE.

Third, AMBE measures the absolute difference between in-
put and output gray-level means. A lower value implies that the
corresponding algorithm well preserves the mean brightness of
an input image. WAHE incurs the lowest brightness change,
since it reduces the abnormality by averaging its transfor-
mation function with the linear transformation function. The
proposed algorithm ranks third. However, WAHE, CVC, and
the proposed algorithm provide similar AMBE scores, which
are significantly better than the score of HE.

Fourth, PixDist computes the average gray-level difference
over all pixel pairs in an image. It yields a high score
when histogram components are uniformly distributed without
concentrating at particular gray-levels. Except for the contrast
over-stretching HE algorithm, the proposed algorithm provides
the best performance in terms of PixDist.

To evaluate the performance variations on individual test
images, we plot the metric scores of output images in com-
parison with those of input images in Fig. 7. In each graph, the
600 input images are indexed so that their scores are sorted in
the ascending order. For DE, the proposed algorithm provides
the best performance, which is very close to the input curve.
For EME, the proposed algorithm enhances the score of every
input image. In contrast, the conventional algorithms reduce

the scores of some input images, especially when the input
scores are high. In the case of AMBE, the average brightness
(AB) is plotted instead of the brightness error. The proposed
algorithm causes bigger variations in AB than the conventional
algorithms, since it is more adaptive to local image details and
structures. For PixDist, the proposed algorithm increases the
score of every input image.

B. Subjective Assessment

Even though an image provides a higher objective quality
score than another image, its subjective visual quality is
not always superior accordingly. In this section, we provide
examples of output images to assess their qualities subjectively
and analyze the characteristics of the proposed algorithm in
comparison with those of the conventional algorithms.

Fig. 8 shows the CE results on the “Eagle” image, which
is mainly composed of a sky region with similar gray-levels
in the range of [100, 140]. This region causes a high peak
in the input histogram, which HE and CVC cannot handle
properly. More specifically, HE and CVC yield steep slopes
in their transformation functions, when the input gray-level is
between 100 and 140, as shown in Fig. 8(f). Thus, HE and
CVC increase the contrast on the smooth region excessively,
producing contour artifacts. Both WAHE and the proposed
algorithm effectively reduce the histogram peak and suppress
the contour artifacts. Furthermore, compared with WAHE, the
proposed algorithm provides a more distinctive silhouettes of
the eagles and better local contrast on the eagle’s tail. In
this example, the minimum input gray-level is 23. WAHE ex-
presses the darkest pixels less darker than the other algorithms
by starting its output gray-level from 14. Therefore, WAHE
uses a narrower output dynamic range, yielding the lowest
EME score. On the contrary, the proposed algorithm exhibits
better contrast by exploiting the full dynamic range.
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Fig. 9. CE results on the “Horse” image: (a) input image, (b) HE, (c) WAHE, (d) CVC, (e) the proposed algorithm, and (f) the comparison of the corresponding
transformation functions.
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Fig. 10. CE results on the “Island” image: (a) input image, (b) HE, (c) WAHE, (d) CVC, (e) the proposed algorithm, and (f) the comparison of the
corresponding transformation functions.

Fig. 9 shows the CE results on the hazy “Horse” image. HE
achieves the highest EME by removing the hazy components,
but it also causes the largest AMBE as it darkens pixel
intensities severely. WAHE does not transform the darkest
input gray-level, which is 40 in this example, to the pure black
level 0. Also, WAHE transforms the input gray-levels between
[50, 100], which correspond to the foreground horses, with a
lower increasing rate than the linear function. Therefore, it
does not enhance the details on the horses clearly. Both CVC
and the proposed algorithm exploit the entire dynamic range,
but the proposed algorithm amplifies the gray-level differences
within the horses more effectively and provides a better image

quality.

In case of the “Island” image in Fig. 10, the original image
looks dull due to its low contrast. HE and CVC improve
the visual quality of the input image, but they incur over-
enhancement problems. While they boost gray-levels within
[100, 250], they lose the details in the clouds and change
the overall brightness dramatically from the input image.
WAHE and the proposed algorithm provide comparable image
qualities in this example. However, the proposed algorithm
enhances the dark seawater more vividly, without losing details
in the bright cloud regions.

Digital images often fail to capture scene details faithfully
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Fig. 11. CE results on the “Memorial Church” image: (a) input image, (b) HE, (c) WAHE, (d) CVC, (e) the proposed algorithm, and (f) the comparison of
the corresponding transformation functions.

due to limited dynamic ranges or unideal imaging systems.
In the following tests, we use test images that are acquired
in those poor environments. First, most imaging systems
cannot capture object details clearly when very bright and
very dark regions coexist in the same scene. In such a case,
an acquisition system selects the exposure setting for either
bright or dark region only. Fig. 11 shows an example of a low
exposure setting, which is selected to capture the bright sky
area faithfully and thus degrades the details in the dark facade
of the church. HE obtains the transformation function based on
the 1-D histogram, without considering gray-level differences
between neighboring pixels. Therefore, it over-stretches the
contrast of the smooth sky region and causes contour arti-
facts. CVC maps input gray-levels [30, 80] to output gray-
levels [50, 200] to enhance the contextual features such as the
paintings on the wall. However, the dramatic contrast increase
on this region alters the mood of the photograph undesirably.
WAHE and the proposed algorithm provide more reliable CE
results than HE and CVC, without the excessive alteration of
the input image.

Image qualities are also degraded when scenes are captured
in very low light conditions. Fig. 12 shows a dark input
image, which contains noise components. When a CE algo-
rithm boosts gray-levels indiscriminately, it also amplifies the
underlying noise components. Thus, HE yields an extremely
noisy image, since it transforms the darkest gray-level to
63. Although CVC exploits the 2D histogram information,
it still experiences the over-enhancement problem due to the
high histogram peak. WAHE suppresses the noise levels more
effectively than HE and CVC, but it does not enhance the
contrast sufficiently. On the other hand, the proposed algorithm
alleviates the noise effects and clarifies the details of the
buildings simultaneously. Therefore, the proposed algorithm

provides the best subjective quality as well as the best EME
score.

C. Comparison on Synthetic Images

In Fig. 13, we compare the performances of the CE al-
gorithms on three synthetic images. The top input image
with sharp edges has the same structure as Fig. 2, but it
is corrupted by additive white Gaussian noise components.
Therefore, we see bell shapes in the corresponding histogram.
The middle input image contains a vertical gradual edge, and
the bottom input image has the same edge with Gaussian noise
components.

It can be observed from Fig. 13 that the proposed al-
gorithm has the following advantages over the conventional
algorithms: First, the proposed algorithm is robust against
noise components. Whereas HE and CVC increase the noise
variances and make each bell shape more widely distributed
in the output histograms, the proposed algorithm preserves
the bell shape with smaller magnification factors. Therefore,
the proposed algorithm preserves homogeneous regions in
an image more reliably than the conventional algorithms.
Second, the proposed algorithm exploits the entire dynamic
range. Given the equality constraint in (11), the proposed
algorithm attempts to maximize the gray-level differences of
output pixels. As a result, the proposed algorithm always
transforms the darkest and the brightest pixels to the minimum
and the maximum gray-levels, respectively. On the contrary,
the conventional algorithms may not use the entire dynamic
range, depending on the histograms of absolute gray-levels.
Therefore, the proposed algorithm generally achieves higher
contrast ratios than the conventional algorithms, which is
confirmed by the middle and the bottom images in Fig. 13.
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Fig. 12. CE results on the “Night View” image: (a) input image, (b) HE, (c) WAHE, (d) CVC, (e) the proposed algorithm, and (f) the comparison of the
corresponding transformation functions.

D. Computation Complexity

We analyze the computational complexities of the CE
algorithms to process an image of resolution H × W with
K gray-levels. We divide the whole process into 3 steps: (A)
the acquisition of an input histogram, (B) the modification of
the histogram, and (C) the construction of the transformation
function. Table II compares the computational complexities
and lists the average computation times over the 600 test
images. We use a personal computer with a 3.3-GHz CPU, and
all algorithms are straightforwardly implemented in MATLAB
without optimization.

HE and WAHE require low complexities, since they mod-
ify an acquired histogram and calculate the transformation
function only once. CVC demands the highest computational
burden, since it solves the matrix inverse problem to obtain the
desired 2D histogram. Moreover, CVC adopts the block-based
acquisition and processing of the 2D histogram information,
and its complexity is proportional to the block size w2.
Notice that the proposed algorithm is much simpler than
CVC, although both algorithms are based on the 2D histogram
information. The proposed algorithm takes only 29 ms to
process an image on average.

V. CONCLUSIONS

We proposed a novel contrast enhancement algorithm using
the LDR, in which the statistical information of gray-level
differences between neighboring pixels in an input image is
exploited to control output gray-level differences. We observed
that frequently occurring gray-level differences should be
amplified to enhance the contrast of the output image, and then
formulated the CE as a constrained optimization problem. The
proposed algorithm consists of two main steps. First, the intra-
layer optimization obtains the difference vector at each layer

by solving the constrained optimization problem. Second, the
inter-layer aggregation combines the difference vectors at all
layers into the unified difference vector, which is equivalent
to the transformation function. Extensive experimental results
demonstrated that the proposed algorithm provides better
image qualities than the conventional algorithms.
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