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Abstract—A power-constrained contrast enhancement algo-
rithm for emissive displays based on histogram equalization is
proposed in this work. We first propose a log-based histogram
modification scheme to reduce overstretching artifacts of the
conventional histogram equalization technique. Then, we develop
a power consumption model for emissive displays, and formulate
an objective function that consists of the histogram equalizing
term and the power term. By minimizing the objective function
based on the convex optimization theory, the proposed algorithm
achieves contrast enhancement and power saving simultaneously.
Moreover, we extend the proposed algorithm to enhance video
sequences as well as still images. Simulation results demonstrate
that the proposed algorithm can reduce power consumption
significantly, while improving image contrast and perceptual
quality.

Index Terms—Image enhancement, contrast enhancement, low
power image processing, histogram equalization, histogram mod-
ification, and emissive displays.

I. INTRODUCTION

The rapid development of imaging technology has made
it easier to take and process digital photographs. However,
we often acquire low quality photographs, since lighting
conditions and imaging systems are not ideal. Much effort
has been made to enhance images by improving several
factors, such as sharpness, noise level, color accuracy, and
contrast. Among them, high contrast is an important quality
factor for providing better experience of image perception
to viewers. Various contrast enhancement techniques have
been developed. For example, histogram equalization (HE) is
widely used to enhance low contrast images [1].

Whereas a variety of contrast enhancement techniques have
been proposed to improve the qualities of general images,
relatively little effort has been made to adapt the enhancement
process to the characteristics of display devices. Notice that,
in addition to contrast enhancement, power saving is also
an important issue in various multimedia devices, such as
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mobile phones and televisions. A large portion of power is
consumed by display panels in these devices [2], [3], and
this trend is expected to continue as display sizes are getting
larger. Therefore, it is essential to develop an image processing
algorithm, which is capable of saving power in display panels
as well as enhancing image contrast.

To design such a power-constrained contrast enhancement
(PCCE) algorithm, different characteristics of display panels
should be taken into account. Modern display panels can be
divided into emissive displays and non-emissive displays [4].
Cathode ray tube (CRT), plasma display panel (PDP), organic
light-emitting diode (OLED), and field emissive display (FED)
are emissive displays that do not require external light sources,
whereas TFT-LCD is a non-emissive one. Emissive displays
have several advantages over non-emissive ones, including
high contrast and low power consumption. First, an emissive
display can turn off individual pixels to express complete
darkness and achieve a high contrast ratio. Second, in an
emissive display, each pixel can be driven independently
and the power consumption of a pixel is proportional to its
intensity level. Thus, an emissive display generally consumes
less power than a non-emissive one, which should turn on a
backlight regardless of pixel intensities. Due to these advan-
tages, OLED and FED are considered as promising candidates
for the next generation display, although TFT-LCD has been
the first successful flat panel display in the commercial market.
Especially, OLED is regarded as the most efficient emissive
device in terms of power consumption [5]. Although OLED
is now used mainly for small panels in mobile devices, its
mass production technology is being rapidly developed and
larger OLED panels will be adopted soon in a wider range of
devices, including televisions and computer monitors [6], [7].

Several image processing techniques for power saving in
display panels have been proposed recently. These techniques
focus on reducing backlight intensities for TFT-LCD displays,
while preserving the same level of perceived quality. Choi et
al. [8] increased pixel values to compensate for the brightness
losses caused by a reduced backlight intensity. To compensate
for the degraded contrast, Cheng et al. [2] truncated both ends
of an image histogram and then stretched pixel intensities,
and Iranli et al. [9] employed histogram equalization. Tsai
et al. [3] decomposed an image into high and low frequency
components, and applied brightness compensation and contrast
enhancement to these sub-band images. These techniques,
however, have been devised for TFT-LCD displays only and
cannot be employed for emissive displays, in which the power
consumption is affected by pixel values directly, rather than by
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a backlight intensity. To our knowledge, no attempt has been
made to develop a contrast enhancement algorithm tailored for
emissive displays, in spite of their aforementioned advantages.

We propose a PCCE algorithm for emissive displays based
on HE. First, we develop a histogram modification (HM)
scheme, which reduces large histogram values to alleviate
the contrast overstretching of the conventional HE technique.
Then, we make a power consumption model for emissive
displays and formulate an objective function, consisting of the
histogram equalizing term and the power term. To minimize
the objective function, we employ convex optimization tech-
niques. Furthermore, we extend the proposed PCCE algorithm
to enhance video sequences. Extensive simulation results show
that the proposed algorithm provides high image contrast and
good perceptual quality, while reducing power consumption
significantly.

The rest of the paper is organized as follows. Section II
reviews conventional HE and HM techniques, and proposes a
log-based HM scheme. Section III develops the power con-
sumption model for emissive displays and proposes the PCCE
algorithm. Section IV describes how the PCCE algorithm can
be extended to enhance video sequences. Section V presents
experimental results. Finally, Section VI concludes this work.

II. HISTOGRAM EQUALIZATION TECHNIQUES

Many contrast enhancement techniques have been devel-
oped. HE is one of the most widely adopted approaches to en-
hance low contrast images, which makes the histogram of light
intensities of pixels within an image as uniform as possible [1].
It can increase the dynamic range of an image by deriving a
transformation function adaptively. A variety of HE techniques
have been proposed [10]–[17]. The main objective of this
work is to develop a power-constrained image enhancement
framework, rather than to propose a sophisticated contrast
enhancement scheme. Thus, the proposed PCCE algorithm
adopts the HE approach for its simplicity and effectiveness.
In this section, we first review conventional HE and HM
techniques, and then develop a log-based HM scheme, on
which the proposed PCCE algorithm is based.

A. Histogram Equalization

In HE, we first obtain the histogram of pixel intensities in an
input image. We represent the histogram with a column vector
h, whose kth element hk denotes the number of pixels with
intensity k. Then, the probability mass function (PMF) pk of
intensity k is calculated by dividing hk by the total number
of pixels in the image. In other words,

pk =
hk

1th
, (1)

where 1 denotes the column vector, all elements of which are
1. The cumulative distribution function (CDF) ck of intensity
k is then given by

ck =

k∑
i=0

pi. (2)

Let xk denote the transformation function, which maps
intensity k in the input image to intensity xk in the output

image. In HE, the transformation function is obtained by
multiplying the CDF ck by the maximum intensity of the
output image [1], [17]. For a b-bit image, there are 2b = L
different intensity levels, and the transformation function is
given by

xk = ⌊(L− 1)ck + 0.5⌋, (3)

where ⌊a⌋ is the floor operator, which returns the largest
integer smaller than or equal to a. Thus, in (3), (L − 1)ck
is rounded off to the nearest integer, since output intensities
should be integers. Note that b = 8 and L − 1 = 255, when
an 8-bit image is considered.

If we ignore the rounding-off operation in (3), we can
combine (2) and (3) into a recurrence equation

xk − xk−1 = (L− 1)pk for 1 ≤ k ≤ L− 1, (4)

with an initial condition x0 = (L−1)p0. This can be rewritten
in vector notations as

Dx = h, (5)

where D ∈ RL×L is the differential matrix

D =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −1 1


, (6)

and h is the normalized column vector of h, given by

h =
L− 1

1th
h. (7)

B. Histogram Modification

The conventional HE algorithm has several drawbacks.
First, when a histogram bin has a very large value, the
transformation function gets an extreme slope. In other words,
note from (4) that the transformation function has sharp
transition between xk−1 and xk when hk, or equivalently
pk, is large. This can cause contrast overstretching, mood
alteration, or contour artifacts in the output image. Second,
especially for dark images, HE transforms very low intensities
to brighter intensities, which may boost noise components
as well, degrading the resulting image quality. Third, the
level of contrast enhancement cannot be controlled, since the
conventional HE is a fully automatic algorithm without any
parameter.

To overcome these drawbacks, many techniques have been
proposed. One of those is HM. In general, HM is the technique
that employs the histogram information in an input image to
obtain the transformation function [18], [19]. Thus, HE can
be regarded as a special case of HM. A recent approach
to HM [16], [17] modifies the input histogram before the
HE procedure to reduce extreme slopes in the transformation
function, instead of the direct control of the output histogram.
For instance, Wang and Ward [16] clamped large histogram
values, and then modified the resulting histogram further using
the power law. Also, Arici et al. [17] reduced the histogram
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values for large smooth areas, which often correspond to
background regions, and mixed the resulting histogram with
the uniform histogram.

In this recent approach to HM, the first step can be
expressed by a vector converting operation, m = f(h),
where m = [m0,m1, · · · ,mL−1]

t denotes the modified
histogram. Then, the desired transformation function x =
[x0, x1, · · · , xL−1]

t can be obtained by solving

Dx = m, (8)

which is the same HE procedure as in (5), except that m is
used instead of h, where m is the normalized column vector
of m

m =
L− 1

1tm
m. (9)

C. Log-based Histogram Modification

We develop an HM scheme using a logarithm function,
which is monotonically increasing and can reduce large values
effectively. In [20], Drago et al. demonstrated that a logarithm
function can successfully reduce the dynamic ranges of high
dynamic range (HDR) images while preserving the details. We
exploit this property and apply a logarithm function to our HM
scheme, called log-based histogram modification (LHM).

We use the following logarithm function to convert the input
histogram value hk to a modified histogram value mk.

mk =
log(hk · hmax · 10−µ + 1)

log(h2
max · 10−µ + 1)

, (10)

where hmax denotes the maximum element within the input
histogram h, and µ is the parameter that controls the level of
histogram modification. As µ gets larger, hk · hmax · 10−µ in
(10) becomes a smaller number. Therefore, a large µ makes
mk almost linearly proportional to hk, since log(1 + x) ≃ x
for a small x. Thus, the histogram is modified less strongly.
On the other hand, as µ gets smaller, hmax · 10−µ becomes
dominant and

log(hk · hmax · 10−µ + 1) ≃ log(hk) + log(hmax · 10−µ)

≃ log(hmax · 10−µ). (11)

Consequently, mk becomes a constant regardless of hk, mak-
ing the modified histogram uniform. In this way, a smaller µ
results in stronger histogram modification.

Fig. 1(a) illustrates how the proposed LHM scheme modifies
an input histogram according to the parameter µ, and Fig. 1(b)
plots the corresponding transformation functions, which are
obtained by solving (8). In this test, the “Door” image in
Fig. 1(c) is used as the input image. We see that LHM reduces
the large peak of the input histogram around the pixel value 70
and thus relaxes the steep slope in the transformation function
of the conventional HE algorithm. Figs. 1(d)∼(g) compare
the output images of the conventional HE algorithm and the
proposed LHM scheme. Because of the steep slope, the con-
ventional HE overstretches the contrast of the background, but
it maps the input pixel range [100, 255] to the narrow output
range of variation about 10 only, wiping out the details on the
door knob. On the other hand, the proposed algorithm with
µ = 5 yields less artifacts on the door knob, while enhancing
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Fig. 1. Illustration of LHM: (a) the input and modified histograms of the
test image in (c), in which each histogram is normalized so that the sum of
all elements is 1. (b) the corresponding transformation functions. (d)∼(g) the
output images.

the details on the background region. It is also observed from
Fig. 1(a) that LHM modifies the histogram more strongly as µ
gets smaller. In the extreme case when µ = −∞, the modified
histogram becomes uniformly distributed. In the other extreme
case when µ = ∞, the histogram is not modified at all.
Therefore, by controlling the single parameter µ, LHM can
obtain the transformation function, which varies between the
identity function and the conventional HE result.

III. POWER-CONSTRAINED CONTRAST ENHANCEMENT

In this section, we propose the PCCE algorithm. Fig. 2
shows an overview of the proposed algorithm. We first gather
the histogram information h from an input image and apply
the LHM scheme to h to obtain the modified histogram m.
Without power constraint, we can solve the equation Dx = m
in (8) to get the transformation function x. However, we design
an objective function, which consists of a power constraint
term as well as a contrast enhancement term. We then express
the objective function in terms of the variable y = Dx. Based
on the convex optimization theory [21], we find the optimal
y that minimizes the objective function. Finally, we construct
the transformation function x from y via x = D−1y, and use
x to transform the input image to the output image.

A. Power Model for Emissive Displays

We model the power consumption in an emissive display
panel that is required to display an image. In [22], Dong et
al. presented a pixel-level power model for an OLED module.



4

Input 

Image

Histogram 

Acquisition
LHM

Formulation of

Objective Function

Iterative

Optimization

Pixel

Mapping

Output

Image

Convex Optimization

Fig. 2. A flow diagram of the proposed PCCE algorithm.

According to their experimental results, the power P to display
a single color pixel can be modeled by

P = w0 + wrR
γ + wgG

γ + wbB
γ , (12)

where R,G,B are the red, green, and blue values of the
pixel. The exponent γ is due to the gamma correction of the
color values in the sRGB format. A typical γ is 2.2 [23]. In
other words, after transforming the color values into luminous
intensities in the linear RGB format, we obtain a linear relation
between the power and the luminous intensities. Also, w0

accounts for static power consumption, which is independent
of pixel values, and wr, wg, wb are weighting coefficients that
express the different characteristics of red, green, and blue
subpixels.

In this work, we alter pixel values to save power in a
display panel. Therefore, we ignore the parameter w0 for static
power consumption. Then, we model the total dissipated power
(TDP) for displaying a color image by

TDP =
N−1∑
i=0

(wrRi
γ + wgGi

γ + wbBi
γ), (13)

where N denotes the number of pixels in the image, and
(Ri, Gi, Bi) denotes the RGB color vector of the ith pixel. The
weighting coefficients wr, wg, wb are inversely proportional
to the subpixel efficiencies, which depend on the physical
characteristics of a specific display panel. A blue subpixel
generally consumes more power than red and green subpixels
to display the same output level due to its low efficiency. For
example, in a particular OLED panel in a mobile phone, the
weighting ratios are about wr : wg : wb = 70 : 115 : 154.
However, we note that different display panels have different
weighting coefficients.

For a gray scale image, TDP is similarly modeled by

TDP =
N−1∑
i=0

Yi
γ , (14)

where Yi is the gray level of the ith pixel. Let us recall the
notations in the last section: there are hk pixels with gray
level k in the input image, and these pixels are assigned gray
level xk in the output image by the transformation function.
Therefore, TDP in (14) can be compactly written in vector
notations as

TDP =
L−1∑
k=0

hkxk
γ = htϕγ(x), (15)

where ϕγ(x) = [xγ
0 , x

γ
1 , · · · , x

γ
L−1]

t, and h is the histogram
vector whose kth element is hk.

Notice that the power model in (13) or (14) is applicable
to not only OLED but also other emissive displays. In [24],
Rose et al. analyzed the power consumption characteristics of
several displays. First, in PDP, the sustain power dominates the
whole power consumption. The sustain power is proportional
to the average picture level ωAPL, which is the average of
luminous intensities of all pixels in an image. The average
picture level ωAPL is, in turn, linearly proportional to TDP
in (14), since it is obtained by dividing TDP by the number
of pixels N . Therefore, TDP in (14) can model the power
consumption in PDP as well. Similarly, it can model the power
consumption in FED, in which the power consumption is also
proportional to ωAPL.

B. Constrained Optimization Problem

We save the power in an emissive display by incorporating
the power model in (15) into the HE procedure. We have two
contradictory goals: we attempt to enhance the image contrast
by equalizing the histogram, but we also try to decrease
the power consumption by reducing the histogram values for
large intensities. These goals can be stated as a constrained
optimization problem,

minimize ∥Dx−m∥2 + αhtϕγ(x)
subject to x0 = 0,

xL−1 = L− 1,
Dx ≽ 0.

(16)

The objective function, ∥Dx − m∥2 + αhtϕγ(x), has two
terms: ∥Dx − m∥2 is the histogram equalizing term in (8),
and htϕγ(x) is the power term in (15). By minimizing the sum
of these two terms, we attempt to improve the image contrast
and reduce the power consumption simultaneously. Here α is
a user-controllable parameter, which determines the balance
between the two terms.

There are three constraints in our optimization problem in
(16). The two equality constraints x0 = 0 and xL−1 = L− 1
state that the minimum and the maximum intensities should
be maintained without changes. In other words, if a display
can express L different intensity levels, the output range of the
transformation function should be also [0, L−1] to exploit the
full dynamic range. The inequality constraint Dx ≽ 0 indi-
cates that the transformation function x should be monotonic,
i.e. xk ≥ xk−1 for every k. Note that a ≽ 0 denotes that all
elements in vector a are greater than or equal to 0. Without
this monotonic constraint, the solution to the optimization
problem may yield a transformation function, which reverses
the intensity ordering of pixels and yields visually annoying
artifacts in the output image.
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C. Solution to the Optimization Problem

As mentioned in Section III-A, the exponent γ in the power
term htϕγ(x) is due to the gamma correction, and a typical
γ is 2.2. For generality, let us assume that γ is any number
greater than or equal to 1. Then, the power term htϕγ(x) is
a convex function of x, and the problem in (16) becomes
a convex optimization problem [21]. Based on the convex
optimization theory, we develop the PCCE algorithm to yield
the optimal solution to the problem.

According to the minimum value constraint in (16), x0 is
fixed to 0 and is not treated as a variable. Thus, the transforma-
tion function can be rewritten as x = [x1, x2, · · · , xL−1]

t after
removing x0 from the original x. Similarly, the dimensions
of m, h, and ϕγ(x) are reduced to L − 1 by removing
the first elements, respectively, and D has a reduced size
(L− 1)× (L− 1) by removing the first row and the first
column.

Then, we reformulate the optimization problem by the
change of variable y = Dx. Each element yk in the new
variable y is the difference between two output pixel intensi-
ties, i.e., yk = xk − xk−1. Thus, y is called the differential
vector. Then, x = D−1y, where

D−1 =


1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1

 ∈ R(L−1)×(L−1). (17)

By substituting the variable x = D−1y and expressing
the maximum value constraint in terms of y, (16) can be
reformulated as

minimize ∥y −m∥2 + αhtϕγ
(
D−1y

)
subject to 1ty = L− 1,

y ≽ 0.
(18)

To solve the optimization problem, we define the La-
grangian cost function

J(y, ν,λ) = ∥y−m∥2 + αhtϕγ
(
D−1y

)
+ ν

(
1ty − (L− 1)

)
− λty, (19)

where ν ∈ R and λ = [λ1, λ2, · · · , λL−1] ∈ RL−1 are
Lagrangian multipliers for the constraints. Then, the optimal
y can be obtained by solving the Karush-Kuhn-Tucker (KKT)
conditions [21]:

1ty = L− 1, (20)
y ≽ 0, (21)
λ ≽ 0, (22)

Λy = 0, (23)

2(y −m) + αγD−tHϕγ−1
(
D−1y

)
+ ν 1− λ = 0, (24)

where Λ = diag(λ) and H = diag(h).
We first expand the vector notations in (24) to obtain a

system of equations, and subtract the ith equation from the

(i+1)th one to eliminate ν. Then, we have a recursive system

yi+1 = yi +mi+1 −mi +
αγ

2
hi

(
i∑

k=1

yk

)γ−1

+
λi+1 − λi

2
for 1 ≤ i ≤ L− 2. (25)

In the Appendix, we show that all λi’s can be eliminated from
the recursion in (25) using (21), (22), (23) and that all yi’s can
be expressed in terms of a single variable z. More specifically,
each yi is a monotonically increasing function of z, given by
yi = gi(z). Then, the remaining step is to determine z that
satisfies the maximum value constraint in (20). To this end,
we form a function

f(z) = 1ty − (L− 1) =

L−1∑
i=1

gi(z)− (L− 1), (26)

and find a solution to f(z) = 0. Since f(z) is monotonically
increasing, there exists a unique solution to f(z) = 0. In this
work, we employ the secant method [25] to find the unique
solution iteratively. Let z(n) denote the value of z at the nth
iteration. By applying the secant formula

z(n) = z(n−1)

− z(n−1) − z(n−2)

f(z(n−1))− f(z(n−2))
f(z(n−1)), n = 2, 3, · · · (27)

iteratively until the convergence, we obtain the solution z.
From z, we can compute all elements in y, since yi = gi(z).
Finally, the transformation function x = D−1y is the optimal
solution to the original problem in (16), which enhances the
contrast and saves the power consumption simultaneously
subject to the minimum value constraint, the maximum value
constraint, and the monotonic constraint.

The parameter α in the objective function in (18) determines
the relative contributions of the histogram equalizing term
∥y − m∥2 and the power term htϕγ(D−1y). These two
terms, however, have different orders of magnitude in general.
Whereas y and m are not affected by the resolution of an input
image, histogram values in h depend on the image resolution.
Moreover, the power term is generally proportional to the
average luminance value of the input image. It is convenient to
compensate the unbalance between the two terms by dividing
the power term by the image resolution and the average
luminance value. More specifically, we change the variable
by

β = α×
N−1∑
i=0

Yinput,i, (28)

where Yinput,i is the gray level of the ith pixel in the input
image. Then we control β instead of α.

For example, Fig. 3 shows the results of the proposed PCCE
algorithm at various β’s. In this test, the “Door” image in
Fig. 1(c) is also used as the input image, the LHM parameter
µ is set to 5, and γ is set to 2.2. In Fig. 3(a), when β = 0,
the power term is not considered in (18) and we obtain the
differential vector y = m. As β gets larger, the elements yk’s
for low pixel values k’s decrease, whereas yk’s for high k’s
increase. As shown in Fig. 3(b), these changes in y lower
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Fig. 3. PCCE results on the “Door” image at various β’s. In the black curve
in (b) and the corresponding output image in (f), generalized minimum and
maximum value constraints x0 = 5 and x255 = 210 are used. In the other
cases, the original constraints x0 = 0 and x255 = 255 are used. Note that
(c) is the result without the power constraint, and thus it is exactly the same
as Fig. 1(f).

the transformation function, reducing the power consumption.
A bigger β saves more power. Without the power constraint
(β = 0), the TDP is 9.28×109. At β = 0.5 and 3, the proposed
algorithm reduces the TDP to 3.55 × 109 and 1.11 × 109,
respectively. In this way, the proposed algorithm determines
the transformation function that balances the requirements of
power saving and contrast enhancement optimally. Further-
more, the amount of power saving can be controlled by the
single parameter β.

Note that the output black and white levels may not be the
same as the input black and white levels in some applica-
tions. The proposed PCCE algorithm can be straightforwardly
modified to handle such cases. Specifically, instead of the
minimum and maximum value constraints in (16), we can use
generalized constraints x0 = lmin and xL−1 = lmax to derive
the transformation function, which maps the input dynamic
range [0, L− 1] to the output dynamic range [lmin, lmax]. For
instance, Fig. 3(b) also shows the transformation function with
the constraints x0 = 5 and x255 = 210. The parameter β
is set to 2.84 to consume the same TDP as the red curve
(x0 = 0, x255 = 255, β = 3) in Fig. 3(b). Comparing the
output images in Figs. 3(e) and (f), we see that the new
constraints reduce the dynamic range and degrade the overall
contrast. In the remainder of this paper, the original constraints
are employed to exploit the full dynamic range.

D. Special Case of γ = 2

In [26], although a typical value of γ is 2.2, we approx-
imated γ to 2 to make TDP in (15) a quadratic function,
which is easier to analyze than the general convex function.
More specifically, when γ = 2, the objective function in (16)
becomes a quadratic function, given by

Jq(x) = (Dx−m)t(Dx−m) + αxtHx (29)
= xtDtDx− 2xtDtm+mtm+ αxtHx. (30)

By differentiating Jq(x) with respect to x and setting it to 0,
we obtain the transformation function

x = (DtD+ αH)−1Dtm. (31)

Therefore, in the special case of γ = 2, the transformation
function is given in a closed form, without requiring the
convex optimization procedure.

However, the solution in (31) does not satisfy the constraints
in (16) in general, especially the maximum value constraint
and the monotonic constraint. In [26], we developed a scheme
that augments the matrix D and the vector m to enforce
the maximum value constraint. But, [26] still may yield a
transformation function, which reverses the ordering of pixel
intensities in the output image. The reverse mapping can de-
grade the image quality severely. On the contrary, the proposed
PCCE algorithm always provides the optimal transformation
function, which satisfies all the constraints. Moreover, the
proposed algorithm can be employed for any γ ≥ 1.

IV. PCCE FOR VIDEO SEQUENCES

We extend the proposed PCCE algorithm to enhance video
sequences. The proposed algorithm provides a power-reduced
output image using the power control parameter β. We can
apply the proposed algorithm with a fixed β to each frame
in a video sequence. However, a typical video sequence
is composed of frames with fluctuating brightness levels.
Experiments in Section V-B will show that a bright frame
can be enhanced with a large β to save power aggressively,
whereas a dark frame can be severely degraded if its overall
brightness is reduced further with the same β. Therefore, we
develop a scheme that determines β adaptively according to
the brightness level of each frame.

For each frame, we first set the target power consumption
TDPout based on the input power consumption TDPin =∑L−1

k=0 hk · kγ , and then control the parameter β to achieve
TDPout. Specifically, we set

TDPout = κ · TDPin, (32)

where κ is the power reduction ratio. When κ = 1, the
proposed algorithm saves no power during the contrast en-
hancement. On the other hand, when κ is smaller, the proposed
algorithm darkens the output frame and decreases the power
consumption.

The power model in Section III-A indicates that a bright
frame consumes more power than a dark frame. Therefore,
more power saving can be achieved for a brighter frame,
and the power reduction ratio κ in (32) can be set to a
smaller value. On the other hand, the ratio for a dark frame
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should be close to 1, since even a small power reduction may
yield poor image quality by reducing the contrast further and
erasing details. Based on these observations, we set the power
reduction ratio κ by

κ =

(
1− Y

L− 1

)ρ

, (33)

where Y denotes the average gray level of an input frame, and
ρ is a user controllable parameter. For a bright input frame with
a high Y , κ is set to a small value to achieve aggressive power
saving. On the contrary, for a dark input frame with a low Y ,
κ is set to be close to 1 to avoid the brightness reduction.

To summarize, given an input frame, we determine the target
power consumption TDPout using (32) and (33). Then, we
find the parameter β to achieve TDPout. Since TDPout is
inversely proportional to β, we can easily obtain the desired
β using the bisection method [27], which iteratively halves
a candidate range of the solution into two subdivisions and
selects the subdivision containing the solution. Thus, in the
video enhancement, β is automatically determined, and the
only power control parameter is ρ in (33). Note that, for the
same Y , a larger ρ yields a smaller κ and saves more power.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm
on ten test images: “Door,” “Moon,” “Pagoda,” “Beach,”
“Sunset,” “Ivy,” “Baboon,” “Lena,” “F-16,” and “Eiffel Tower.”
These test images are shown in Figs. 1, 4, and 10. “Beach”
and “Door” are from the Kodak Lossless True Color Image
Suite1, “Baboon,” “Lena,” and “F-16” are from the USC-
SIPI database2, and the others are taken with a commercial
digital camera and resized. The resolution of “Eiffel Tower”
is 480 × 720, those of the USC-SIPI images are 512 × 512,
and those of the others are 720 × 480. We process only the
luminance components in the experiments. More specifically,
given a color image, we convert it to the YUV color space,
and then process only the Y component without modifying
the U and V components. Therefore, TDP is also measured
for the Y component only using (14). In all experiments, γ is
set to 2.2.

A. Contrast Enhancement without Power Constraint
First, we compare the proposed PCCE algorithm without the

power constraint (β = 0) with the conventional HE and HM
techniques. Fig. 4 shows the processed images obtained by the
conventional HE algorithm, the weighted approximated HE
(WAHE) algorithm [17], and the proposed PCCE algorithm
(β = 0). The proposed algorithm is tested in two ways. In
Fig. 4(d), the user-controllable parameter µ for LHM in (10)
is set to 2, 6.5, 5.5, 6.5, 5, 5.5, 5, and 5 for the eight test
images, respectively, to achieve the best subjective qualities.
On the other hand, in Fig. 4(e), µ is fixed to 5. For the
WAHE results in Fig. 4(c), the parameter g is adapted for each
image to achieve the best subjective quality. Fig. 5 shows the
transformation functions, which are used to obtain the images
in Fig. 4.

1http://r0k.us/graphics/kodak/
2http://sipi.usc.edu/database/
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(f) Baboon
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(g) Lena
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Fig. 5. The transformation functions used to obtain the output images in
Fig. 4.

We observe from Fig. 4(b) that the conventional HE al-
gorithm causes excessive contrast stretching. In the “Moon”
image, hidden noises become visible, degrading the image
quality severely. This noise amplification is due to the steep
slope of the transformation function near intensity 0, as shown
in Fig. 5. The contrast overstretching suppresses the overall
brightness of the “Beach” image. The transformation function
reduces the input pixel range [0, 150] to the output pixel
range [0, 50] by extending the contrast around the input pixel
intensity 170, which corresponds to the background area.
Also, contour artifacts are observed in “Sunset.” In general,
the conventional HE algorithm often produces unsatisfactory
results, including amplified noises, contour artifacts, detail
losses, and mood alteration.

Compared with the conventional HE, both WAHE and
the proposed algorithm reduce artifacts by alleviating abrupt
changes in the transformation functions as shown in Figs. 4(c)
and (d). WAHE exploits spatial variance information to re-
duce large histogram values, based on the observation that
peaks in histograms usually come from background regions.
Specifically, WAHE skips repeated pixel intensities during the
construction of an input histogram to focus on the contrast
enhancement of textured regions. Thus, it can enhance object
details, whereas it may degrade background details. For exam-
ple, on the “Pagoda” image, WAHE improves the contrast of
the tower, but loses the details in the clouds. Similarly, since
the wall in the “Ivy” image has small intensity variations, its
contrast is not enhanced by WAHE significantly.

The proposed PCCE algorithm provides comparable or bet-
ter results than WAHE on all test images, as shown in Fig. 4(d).
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(a) (b) (c) (d) (e)

Fig. 4. Contrast enhancement results on the test images “Moon,” “Pagoda,” “Beach,” “Sunset,” “Ivy,” “Baboon,” “Lena,” and “F-16”: (a) original input
images, (b) the conventional HE algorithm, (c) WAHE [17], (d) PCCE with adapted µ, and (e) PCCE with µ = 5. The proposed PCCE algorithm is tested
without the power constraint (β = 0).
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On the “Moon,” “Beach,” “Sunset,” “Baboon,” “Lena,” and
“F-16” images, the proposed algorithm and WAHE produce
similar results. However, on the “Pagoda” and “Ivy” images,
the proposed algorithm yields better perceptual quality than
WAHE. Notice that the proposed algorithm enhances the
clouds in “Pagoda” and the patterns on the wall in “Ivy” more
clearly. In Fig. 4(e), we fix the LHM parameter µ to 5. Except
for slight differences in the “Pagoda” image, the output images
with the fixed µ are almost indiscernible from those with the
adapted µ’s in Fig. 4(d). Experiments on various other images
also confirm that µ = 5 is a reliable choice. Therefore, in the
following experiments, µ is set to 5 unless otherwise specified.

B. Contrast Enhancement with Power Constraint

Next, we evaluate the performance of the proposed PCCE
algorithm with the power constraint (β > 0). Fig. 6 shows the
output images obtained by the proposed algorithm at different
β’s. The images in Fig. 6(a) are exactly the same as those in
Fig. 4(e). As β gets larger, the overall brightness of the output
images decreases but the image contrast is relatively well
preserved. Note that the perceptual quality and the subjective
contrast of the output images at β = 0.5 are almost the same as
those at β = 0. Especially, when these images are displayed
on OLED panels, it is hard to distinguish the case without
the power constraint (β = 0) from the case with the power
constraint (β > 0) unless β is set to be very high. Fig. 6(e)
shows the output images when β has a very high value of 15.
Even in this case, the originally bright images “Ivy” and “F-
16” retain visual details partly, but the other relatively dark
images are severely degraded. In general, β can be set to
a higher number for a brighter image to save power more
aggressively. On the other hand, for a dark input image, β
should be less than 2 for the proposed algorithm to yield good
image quality.

Fig. 7 shows how the transformation functions vary accord-
ing to β. As β gets larger, the proposed algorithm lowers the
transformation functions to save more power, but it preserves
the slopes of the functions (or equivalently the contrast) for
input pixel values with large histogram values. However,
as β gets larger, the proposed algorithm inevitably reduces
the contrast for infrequent input pixel values. For example,
“Pagoda” has low histogram values for input pixel values
around 90. Thus, at β = 3, the transformation function
becomes flat near those pixel values.

Fig. 8 compares the TDP measurements for the images
in Figs. 4 and 6. For the dark “Moon” image, all three
contrast enhancement methods HE, WAHE, and the proposed
algorithm (β = 0) increase pixel values to stretch the im-
age contrast, requiring higher TDP’s than the original input
images. However, the proposed algorithm can reduce TDP’s
by increasing the parameter β. Moreover, for brighter images,
such as “Beach” and “Ivy,” the proposed algorithm can reduce
the power consumption more significantly while improving the
overall contrast. For instance, on the “Ivy” image, the proposed
algorithm at β = 1.5 reduces the TDP by more than 70%
as compared with the input image, but it still improves the
contrast.
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(d) Sunset
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(e) Ivy
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(f) Baboon
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(g) Lena
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(h) F-16

Fig. 7. The transformation functions for obtaining the power-constrained
contrast enhancement results in Fig. 6.
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Fig. 8. The TDP measurements of the images in Figs. 4 and 6.

Fig. 9 compares the outputs of the proposed algorithm at
β = 1.5 with those of the linear mapping method. Let us recall
that the power reduction ratio is defined as κ = TDPout/TDPin

in (32). The linear mapping method uses a linear transforma-
tion function xk = c · k, where the constant c is set for each
image in such a way that the method achieves the same κ as
the proposed algorithm. Whereas the linear mapping method
provides dull output images due to the reduced dynamic
ranges, the proposed algorithm provides significantly better
image contrast and perceptual quality. An exception is the
“Sunset” image, on which the proposed algorithm sacrifices
the details in the mountain region to improve the contrast in
the sky region. In this test (β = 1.5), the mean and the variance
of the power reduction ratios κ’s for the eight test images are
0.36 and 0.009. At β = 3, the mean becomes 0.26 and the
variance becomes 0.015. At β = 15, the mean is 0.14 and the
variance is 0.010.
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(a) (b) (c) (d) (e)

Fig. 6. Power-constrained contrast enhancement results: (a) β = 0, (b) β = 0.5, (c) β = 1.5, (d) β = 3, and (e) β = 15.
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(a) Moon (κ = 0.576) (b) Pagoda (κ = 0.540)

(c) Beach (κ = 0.342) (d) Sunset (κ = 0.594)

(e) Ivy (κ = 0.271) (f) Baboon (κ = 0.345)

(g) Lena (κ = 0.369) (h) F-16 (κ = 0.385)

Fig. 9. Comparison of power-reduced output images obtained by the linear
mapping method and the proposed algorithm (β = 1.5). In each subfigure,
the left image is obtained by the linear mapping method, and the right one
by the proposed algorithm.

C. Impacts of Parameters β and µ on Power Consumption

As discussed in the last section, β is directly related to
the power consumption. However, the LHM parameter µ
also affects the power consumption, since it influences the
transformation function as illustrated in Fig. 1. In Figs. 10 and
11, we show the output images and the power reduction ratios
κ’s for various combinations of β and µ. In both Fig. 10 and
Fig. 11, it can be observed that, for a fixed µ, TDPout decreases
consistently as β gets larger. On the contrary, the effects of µ
on TDPout are inconsistent, depending on the characteristics
of the input images. A larger µ modifies the input histograms
less strongly and overstretches the contrast. Because of the
contrast overstretching, a larger µ increases TDPout on the
dark “Eiffel Tower” image, but decreases TDPout on the bright
“F-16” image. These inconsistent effects make µ less suitable
for the power control.

The LHM parameter µ controls the level of contrast en-
hancement, but a larger µ does not always provide better
subjective quality. In the extreme case µ = ∞, the histogram
is not modified at all, and LHM becomes the conventional
HE algorithm, which has several drawbacks. In Section V-A,
we showed that, when µ is fixed to 5, the proposed algorithm
without the power constraint suppresses the drawbacks of the
conventional HE and provides good image quality reliably.
Similarly, Figs. 10 and 11 show that the case µ = 5, enclosed
by the solid rectangle, yields satisfactory image quality for
various β’s. In other words, each image within the rectangle
provides comparable or better quality than the images outside
the rectangle with similar power reduction ratios. An improper

1.126 0.752 0.585 0.492 0.430 0.387

1.162 0.770 0.598 0.499 0.436 0.391

1.235 0.807 0.619 0.514 0.447 0.400

1.406 0.888 0.668 0.548 0.471 0.419

1.894 1.114 0.801 0.637 0.535 0.467

3.048 1.626 1.097 0.831 0.674 0.572

β
0 0.5 1 1.5 2 2.5

µ

3

4

5

6

7

8

Fig. 10. The output “Eiffel Tower” images for various combinations of β and
µ. Each number is the power reduction ratio κ of the corresponding image.
To control the power consumption, we suggest fixing µ to 5 and varying only
β, as indicated by the solid rectangle.

value of µ may yield undesirable artifacts in the output image.
Therefore, we suggest fixing µ to 5 and varying only β to
control the power consumption.

D. PCCE for Video Sequences

Next, we enhance video sequences using the algorithm
in Section IV. Two video clips from the movies “Avatar”
and “The Shawshank Redemption” are employed as test se-
quences, and each clip consists of 700 frames. In the video
enhancement, the power consumption is affected by the LHM
parameter µ and the power control parameter ρ in (33).
However, as mentioned in the last section, µ is not suitable
for the power control. Therefore, we fix µ to 5 and vary only
ρ to control the power consumption.

Figs. 12 and 13 compare the TDP’s of input and output
frames. They also show selected frames. ‘Adaptive’ denotes
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Fig. 11. The output “F-16” images and the power reduction ratios for various
combinations of β and µ. Each number is the power reduction ratio κ of the
corresponding image. To control the power consumption, we suggest fixing
µ to 5 and varying only β, as indicated by the solid rectangle.

the proposed algorithm, and ‘Static’ means the static method
that maintains a constant output TDP regardless of an input
TDP. Let us first compare the proposed algorithm at ρ = 0.5
with the static method. The constant output TDP of the static
method is set to be equal to the average TDP of the proposed
algorithm at ρ = 0.5 over all frames. The proposed algorithm
reduces more power for brighter input frames adaptively,
whereas the static method fixes the output power and thus even
increases power for some dark input frames. We see that the
proposed algorithm provides better perceptual image quality.
For bright input frames, e.g. the 200th frame in Fig. 12 and
the 693rd frame in Fig. 13, the proposed algorithm reduces the
power consumption by 26.8% and 11.8%, respectively, without
decreasing the image quality. On the contrary, the static
method darkens those frames too much and hides the details.
For dark input frames, the proposed algorithm decreases the
power consumption slightly, while the static method increases
the power consumption. For instance, on the 135th frame in
Fig. 12, the static method consumes about twice higher TDP
than the input frame, but improves the image contrast only
marginally.

In Figs. 12 and 13, we also see that the proposed algorithm
saves more power, as the parameter ρ gets larger. On average,
when ρ is set to 0.5, 1.0, and 1.5, the proposed algorithm
reduces the power consumption by 19.3%, 34.7%, and 46.9%
for “Avatar” and by 21.2%, 36.3%, and 47.4% for “Shawshank
Redemption,” respectively. The proposed algorithm saves more

TABLE I
AVERAGE COMPUTATIONAL COMPLEXITY TO PROCESS A STILL IMAGE OR

A VIDEO FRAME

# of bisection # of variable # of secant Processing
iterations changes iterations time

Still image - 16.9 3.84 6.23 ms
Video frame 9.34 5.37 2.65 15.12 ms

power for a brighter input frame, while it attempts to avoid the
brightness reduction for a darker frame. Thus, even though the
proposed algorithm reduces the average power consumption
significantly, it provides good subjective image quality by
exploiting the characteristics of input frames.

E. Computational Complexity

Table I summarizes the computational complexity, which is
required for the proposed PCCE algorithm to process a still
image or a video frame. It lists the average performance over
all test images in Figs. 1, 4, and 10, as well as the average
performance over all frames in the two video sequences in
Figs. 12 and 13. We use a PC with 3.3 GHz CPU for this
test. The proposed algorithm is implemented in C, but not
optimized.

In the still image processing, the secant formula in (27) is
iteratively applied to find a solution to f(z) = 0. The average
number of secant iterations is about 3.84. As mentioned in
the Appendix, if the solution z is less than or equal to 0, we
change z from yi−1 to yi. The average number of variable
changes is 16.9. The proposed algorithm takes only 6.23 ms
to enhance a still image on average.

In the video enhancement, for each frame, to find β that
produces a target TDPout, the proposed algorithm uses the bi-
section method, which requires additional iterations. Thus, the
average processing time for a video frame is longer than that
for a still image. However, both secant and bisection iterations
are performed with the vector y, the dimension of which is just
256. Therefore, even our software implementation takes only
15.12 ms to process a video frame on average. Moreover, the
PCCE algorithm can be efficiently implemented on hardware
such as field-programmable gate arrays (FPGA’s).

VI. CONCLUSIONS

We proposed the PCCE algorithm for emissive displays,
which can enhance image contrast and reduce power consump-
tion. We made a power consumption model and formulated an
objective function, which consists of the histogram equalizing
term and the power term. Specifically, we stated the power-
constrained image enhancement as a convex optimization
problem, and derived an efficient algorithm to find the opti-
mal transformation function. Simulation results demonstrated
that the proposed algorithm can reduce power consumption
significantly, while yielding satisfactory image quality. In this
work, we employed the simple LHM scheme, which uses the
same transformation function for all pixels in an image, for
the purpose of the contrast enhancement. One of the future
research issues is to generalize the power-constrained image
enhancement framework to accommodate more sophisticated
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Fig. 12. TDP graphs for the “Avatar” video clip and selected frames. ‘Adaptive’ denotes the proposed algorithm, and ‘Static’ means the method that maintains
a constant output TDP regardless of an input TDP. The constant TDP is set to be equal to the average TDP of the proposed algorithm at ρ = 0.5.

contrast enhancement techniques, such as [10], [11], which
process an input image adaptively based on local characteris-
tics.

APPENDIX
EXPRESSION OF ALL ELEMENTS IN y IN TERMS OF A

SINGLE VARIABLE z.

Let us assume that y1 > 0. The conditions in (21), (22),
and (23) can be rewritten as

yi ≥ 0, λi ≥ 0, and λiyi = 0 for all i. (34)

Therefore, λ1 = 0. Also, y2 = y1+m2−m1+
αγ
2 h1y

γ−1
1 + λ2

2
from (25). Let us consider two cases,

• case 1: y1 +m2 −m1 +
αγ
2 h1y

γ−1
1 > 0,

• case 2: y1 +m2 −m1 +
αγ
2 h1y

γ−1
1 ≤ 0.

In case 1, y2 > λ2

2 . Then, λ2

2 = 0 from the constraints in (34),
and

y2 = y1 +m2 −m1 +
αγ

2
h1y

γ−1
1 . (35)

Also, from (25), y3 = y2+m3−m2+
αγ
2 h2(y1+y2)

γ−1+ λ3

2 .
We have two sub-cases,

• case 1.1: y2 +m3 −m2 +
αγ
2 h2(y1 + y2)

γ−1 > 0,

• case 1.2: y2 +m3 −m2 +
αγ
2 h2(y1 + y2)

γ−1 ≤ 0.
In case 1.1, λ3

2 = 0 and

y3 = y2 +m3 −m2 +
αγ

2
h2(y1 + y2)

γ−1. (36)

By plugging (35) into (36), y3 can be expressed in terms of
y1. In case 1.2, since y3 ≤ λ3

2 , y23 ≤ λ3y3

2 . Therefore, y3 = 0.
In case 2, y2 = y1+m2−m1+

αγ
2 h1y

γ−1
1 + λ2

2 = 0. From
(25), y3 = m3 − m2 + αγ

2 h2y
γ−1
1 + λ3−λ2

2 . By combining
these two equations, we have y3 = y1 +m3 −m1 +

αγ
2 (h1 +

h2)y
γ−1
1 + λ3

2 . We again have two sub-classes,
• case 2.1: y1 +m3 −m1 +

αγ
2 (h1 + h2)y

γ−1
1 > 0,

• case 2.2: y1 +m3 −m1 +
αγ
2 (h1 + h2)y

γ−1
1 ≤ 0.

In case 2.1, λ3

2 = 0 and

y3 = y1 +m3 −m1 +
αγ

2
(h1 + h2)y

γ−1
1 . (37)

In case 2.2, y3 = 0.
Consequently, in all cases, y2 and y3 are either 0 or

expressed in terms of a single variable y1. Similarly, all the
other elements in y also can be expressed in terms of a single
variable z = y1. Therefore, we can obtain the function f(z)
in (26) and solve f(z) = 0 using the secant method. If the
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Fig. 13. TDP graphs for the “Shawshank Redemption” video clip and selected frames. In the graphs, the TDP’s for frames 301 to 650 are omitted to show
those for the other frames in more detail. ‘Adaptive’ denotes the proposed algorithm, and ‘Static’ means the method that maintains a constant output TDP
regardless of an input TDP. The constant TDP is set to be equal to the average TDP of the proposed algorithm at ρ = 0.5.

solution z = y1 is less than or equal to 0, it violates the starting
assumption in this Appendix. In such a case, we set y1 to 0,
express all the other elements yi by a variable z = y2, and
solve f(z) = 0. We continue this procedure, until we find the
first positive z = yi that expresses the subsequent elements
and solves the equation f(z) = 0.
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