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Abstract

A simple yet effective object descriptor for visual track-
ing is proposed in this paper. We first decompose the bound-
ing box of a target object into multiple patches, which are
described by color and gradient histograms. Then, we con-
catenate the features of the spatially ordered patches to rep-
resent the object appearance. Moreover, to alleviate the im-
pacts of background information possibly included in the
bounding box, we determine patch weights using random
walk with restart (RWR) simulations. The patch weights
represent the importance of each patch in the description
of foreground information, and are used to construct an ob-
ject descriptor, called spatially ordered and weighted patch
(SOWP) descriptor. We incorporate the proposed SOWP de-
scriptor into the structured output tracking framework. Ex-
perimental results demonstrate that the proposed algorithm
yields significantly better performance than the state-of-the-
art trackers on a recent benchmark dataset, and also excels
in another recent benchmark dataset.

1. Introduction
Visual tracking has drawn much attention for its various

applications, such as self-driving cars, security and surveil-
lance systems, and augmented reality. With recent advances
in machine learning, numerous tracking-by-detection algo-
rithms [16, 17, 3, 4, 24, 18, 33, 40] have been proposed,
which yield promising performances. A typical tracking-
by-detection algorithm detects a target object over time,
while updating a classifier using tracking results. Positive
and negative samples, which correspond to foreground and
background image regions, respectively, are employed to
train the classifier. However, when training samples are
assigned false labels or when sample descriptors cannot
clearly distinguish between positive and negative samples,
a classifier may be corrupted, degrading the tracking-by-
detection performance.

To overcome these drawbacks, lots of algorithms have
been proposed to reduce the impacts of false labeling [17,

4, 18, 24, 40] and to describe positive and negative samples
distinguishably [33, 10]. However, it is still challenging to
develop a reliable object descriptor, since the bounding box
of a target object often contains background features due to
deformation, occlusion, and object size variation. Attempts
have been made to alleviate the effects of undesirable back-
ground features [7, 19, 31], but these approaches require
prior knowledge or predefined parameters, the validity of
which is hard to be verified.

We propose a novel object descriptor, called spatially or-
dered and weighted patch (SOWP) descriptor, to represent
the appearance of an object faithfully and suppress back-
ground information in a bounding box systematically. To
construct the SOWP descriptor, we divide the bounding box
of a target object into non-overlapping patches and then
describe each patch using an RGB histogram and a gradi-
ent histogram. We then concatenate the patch descriptors
within the bounding box to convey structural information of
the object. Moreover, to reduce the effects of background,
we scale each patch descriptor with a weight, which repre-
sents the importance of the patch in the object description.
For the patch weight computation, we perform two random
walk with restart (RWR) simulations: one for foreground
clustering and the other for background clustering. We in-
corporate this SOWP descriptor into the structured output
tracking framework [18]. When updating the classifier, we
use only the samples with high confidence scores to prevent
bad updates. Experimental results show that the proposed
tracker achieves the best performance on the CVPR2013
visual tracking benchmark dataset [38], and improves the
performance of [18] by 36.3% in precision and 30.6%
in success rate. Moreover, the proposed tracker also pro-
vides a competitive performance in the VOT2014 challenge
dataset [28].

This work has three main contributions: First, we ex-
perimentally find a simple yet effective method to con-
struct a spatially ordered patch descriptor for visual track-
ing. Second, we develop an RWR scheme to suppress the
impacts of background information in an object bounding
box through adaptive weighting. Third, the proposed al-
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gorithm significantly outperforms the recent state-of-the-art
trackers in [21, 9, 1, 39, 5, 22, 14, 40, 32], as well as all 29
trackers in the CVPR2013 benchmark [38].

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work, and Section 3 describes pre-
liminaries. Section 4 presents the proposed algorithm, and
Section 5 discusses experimental results. Finally, Section 6
draws conclusions.

2. Related Work
Since Avidan [2] first formulated visual tracking as a bi-

nary classification problem, many tracking-by-detection al-
gorithms have been proposed [3, 16]. However, they may
degrade the detection performance with falsely labeled sam-
ples. Grabner et al. [17] tried to prevent false labeling by
training the classifier with labeled samples in the first frame
and unlabeled samples in subsequent frames. Babenko et
al. [4] employed a bag of multiple samples, instead of a
single sample, for updating the classifier reliably. Hare et
al. [18] adopted the structured output SVM [37] to alleviate
the problem, caused by the ambiguity in binary labeling of
samples, and provided excellent tracking results.

Comaniciu et al. [7] employed a color histogram to de-
scribe object appearance, but their method suffers from oc-
clusion and cluttered background due to the lack of struc-
tural information. Patch-based object description has been
adopted to exploit structural information [18, 36, 41], which
divides the bounding box of an object into multiple patches
and describes the object by concatenating low-level fea-
tures of patches, such as the histogram of oriented gradi-
ents(HOG) [8]. Also, multiple features have been com-
bined together to describe an object. Li et al. [33] com-
bined intensity histograms, local binary pattern histograms,
gradient histograms, and Haar-like features, based on a ran-
dom decision tree, for compact and discriminative descrip-
tion. Chen et al. [6] extracted intensity and gradient data
in patches and processed those data to yield a compound
object descriptor. However, these object descriptors may
become inadequate, when a bounding box contains back-
ground regions.

Researches have been carried out to reduce the effects of
background information on object description. For exam-
ple, Comaniciu et al. [7] assigned smaller weights to bound-
ary pixels within a bounding box during the histogram con-
struction. He et al. [19] also assumed that pixels far from
a box center should be weighted less. Note that [7, 19]
may fail to provide reliable tracking results, when a tar-
get object has a complicated shape or is occluded. Lee et
al. [31] assigned a pertinence score to each patch by com-
puting the appearance similarity of the patch to foreground
and background regions. However, [31] uses fixed parame-
ters for the pertinence score computation, which may cause
tracking failures depending on input sequences. A related

approach is to integrate a segmentation step into tracking
in order to identify object patches and trace those patches
directly, instead of a bounding box [15, 12]. These algo-
rithms, however, are sensitive to segmentation results.

3. Preliminaries
The proposed algorithm performs RWR simulations [35]

to reduce the impacts of background information in object
description. Thus, we explain the notion of RWR in this
section. We also describe the structured output tracking
framework [18], into which we incorporate the proposed
SOWP descriptor to design a tracker.

3.1. Random Walk with Restart

Consider a graph G(V,E) with nodes v ∈ V and edges
e ∈ E. A random walker traverses the graph according to
a transition matrix A, in which the (i, j)th element aij is
the probability that the walker at node vj moves to node
vi. In an RWR simulation, the walker is forced to return to
specified nodes, according to a restart distribution r, with a
probability ε. Let p(t) denote the probability distribution of
the walker at the tth iteration. Then, we have the recursion

p(t) = (1− ε)Ap(t−1) + εr. (1)

As t approaches infinity, p(t) converges to the stationary
distribution π = limt→∞ p(t), regardless of an initial con-
dition p(0). The stationary distribution π satisfies

π = (1− ε)Aπ + εr, (2)

and it can be obtained by applying (1) recursively.
In the interactive image segmentation in [26], the restart

distribution r represents the positions of user scribbles.
Then, the stationary distribution indicates the affinity of
each node to the scribbled nodes, and hence can be used
for the segmentation. RWR has many applications, such
as data mining [35], and saliency detection [25], as well as
interactive image segmentation.

3.2. Structured Output Tracking

Let Φ(xt,y) denote a descriptor representing a bound-
ing box y in the tth frame xt. The Struck algorithm [18]
estimates the object bounding box yt in the tth frame to
maximize a classifier score 〈w,Φ(xt,y)〉, where w is the
normal vector of a decision plane;

yt = arg max
y
〈w,Φ(xt,y)〉. (3)

When training the classifier, Struck attempts to avoid the la-
beling ambiguity by employing structured samples instead
of binary-labeled samples. A structured sample consists
of an object bounding box and nearby boxes in the same



Figure 1. Examples of video sequences, in which non-target ob-
jects have the same category as a target object does. Target objects
are within yellow bounding boxes.

frame. Struck constrains that the classifier score of an object
bounding box should be larger than that of a nearby box by
a margin, which is determined by the overlap ratio between
the two boxes. Thus, Struck does not require a heuristic
method to assign binary labels to training samples, and can
reduce adverse effects of false labeling. Struck achieves ex-
cellent tracking performance, and its learning strategy has
been adopted by many recent trackers [41, 5].

4. Proposed Algorithm
We propose an accurate and robust object description

technique for visual tracking. First, we divide the bounding
box of a target object into non-overlapping patches and con-
struct a descriptor for each patch using multiple low-level
features. We describe the object appearance by concatenat-
ing the patch descriptors to convey structural information of
the target object. Second, we assign different weights to the
patches adaptively, based on RWR [35], to yield the SOWP
descriptor. We integrate the proposed SOWP descriptor into
the structured output tracking framework in [18] to design
a tracker.

4.1. Spatially Ordered Patch Descriptor

In visual tracking, it is important to construct a descriptor
Φ(xt,y), which represents the contents in a bounding box y
in the tth frame xt distinguishably. To design an accurate
and reliable descriptor, we first decompose the bounding
box into 64 non-overlapping patches and characterize each
patch using low-level features. Then, we construct the spa-
tially ordered patch (SOP) descriptor for the bounding box,
by concatenating the feature vectors of all patches accord-
ing to their spatial orders, given by

Φ(xt,y) = [f1
T , · · · , f64T ]T (4)

where fi is the feature vector of the ith patch. SOP conveys
structural information of the bounding box, by preserving
the orders (or locations) of the patches within the box.

The concept of the SOP descriptor has been used in com-
puter vision techniques. For example, the histogram of ori-
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Figure 2. Inclusion of background information within an ob-
ject bounding box due to complex object shape and size variation.
In each of these sequence, background information causes a drift
problem, and a tracker loses the target object eventually.

ented gradients (HOG), which represents a bounding box by
concatenating the oriented gradient histograms of patches
within the box, is used in object detection [8, 13]. However,
whereas the goal of object detection is to detect objects of
a certain category, that of object tracking is to track a tar-
get object and distinguish it from possibly many non-target
objects. Furthermore, it makes object tracking more diffi-
cult that the non-target objects may belong to the same cat-
egory as the target object does. For instance, in Figure 1,
for successful tracking, the object descriptor should be able
to distinguish the target sprinter (or dancer) from the other
sprinters (or dancers), who have similar shapes or colors as
the target. In such a case, the descriptor, composed of a
single type of features, may be inadequate.

To design a more informative SOP descriptor, we tested
various combinations of five low-level features: RGB color
histogram, Lab color histogram, HSV color histogram, in-
tensity histogram, and gradient histogram. We found that
the combination of a 24-dimensional RGB color histogram
and an 8-dimensional oriented gradient histogram results in
superb tracking performance. Consequently, we describe
each patch by using the 32-dimensional feature vector.

We also empirically set the number of patches within a
bounding box. Too many patches increase the complex-
ity due to a high descriptor dimension. In contrast, only
a few patches cannot describe object structures faithfully.
We tested various numbers of patches from 16 to 100, and
selected 64 to strike a balance between the tracking perfor-
mance and the complexity.

4.2. Adaptive Patch Weighting

It is desirable that the bounding box of a target object
contains foreground information only. However, as shown
in Figure 2, it may contain background information as well,
which corrupts the object descriptor and the classifier. More
specifically, the background information may be used for



(a) (b) (c) (d)

Figure 3. The computation of the foreground weight vector ρt. In
(a), three sets Ωin

t , Ωbnd
t , and Ωout

t are defined over a bounding
box to construct a graph. Then, the stationary distributions πF

t in
(b) and πB

t in (c) are computed by carrying out the RWR simu-
lations with different restart distributions. In (d), the foreground
weight vector ρt is obtained by comparing πF

t with πB
t .

training the classifier improperly, and the wrongly trained
classifier, in turn, detects a bounding box with more back-
ground regions. This series of background expansion within
a bounding box eventually results in tracking failures in
Figure 2. To overcome this problem, we assign different
weights to the patches within a bounding box according to
their relevance to a target object.

Among the patches within a bounding box, we refer to
those patches, sharing the boundary with the bounding box,
as boundary patches, and the other patches as inner patches.
In addition, we consider outer patches, which are located
outside the bounding box but share the boundary. Let Ωin

t ,
Ωbnd

t , and Ωout
t denote the sets of inner, boundary, and outer

patches at the tth frame, respectively, which are depicted
in yellow, green, and blue colors in Figure 3(a). We then
construct a graph G, by taking each patch in these three
sets as a node. If nodes vi and vj are 8-neighbors, they are
connected by edge eij , which is assigned a weight

wij = exp(−γ‖fi − fj‖2) (5)

where γ denotes a scaling parameter. A higher wij means
that the two patches of vi and vj exhibit a stronger similar-
ity. Then, we define a Markov transition matrix A = [aij ]
of a random walker, by normalizing the edge weights as

aij =
wij∑
i wij

. (6)

We perform the RWR simulations on G twice using two
different restart distributions rFt and rBt , which are associ-
ated with the foreground and background regions, respec-
tively. Then, we obtain the foreground and background sta-
tionary distributions, πF

t and πB
t , via (2). Specifically,

πF
t = (1− ε)AπF

t + εrFt , (7)
πB

t = (1− ε)AπB
t + εrBt , (8)

where ε is a restart probability. These stationary distribu-
tions πF

t and πB
t represent probabilistic shapes of a target

object and its background, by forming clusters around the
restart distributions rFt and rBt , respectively [26].

As observed in [31], patches around the center of the
bounding box tend to contain foreground features, whereas
those near the box boundary are likely to have background
features. It means that most patches in Ωin

t tend to be fore-
ground patches, while most patches in Ωout

t background
ones. Based on these assumptions, we determine the restart
distributions as

rFt (i) =

{
κFt × πF

t−1(i) if vi ∈ Ωin
t ∪ Ωbnd

t ,
0 if vi ∈ Ωout

t ,
(9)

rBt (i) =

{
0 if vi ∈ Ωin

t ,
κBt × πB

t−1(i) if vi ∈ Ωbnd
t ∪ Ωout

t ,
(10)

where κFt and κBt are the normalizing parameters to make
rFt and rBt probability distributions. Notice that we employ
the stationary distributions at the previous frame to estimate
the restart distributions at the current frame, since a target
object tends to change its shape smoothly between consec-
utive frames in a typical video sequence. Figures 3(b) and
(c) illustrate the stationary distributions πF

t and πB
t , respec-

tively, which reflect the likelihoods that each patch belongs
to the foreground and the background, respectively.

We regard the ith patch to be a foreground patch, when
it yields a large πF

t (i) but a small πB
t (i). Specifically, we

compute the foreground weight ρt(i) of the ith patch by

ρt(i) =
1

1 + exp
(
−α(πF

t (i)− πB
t (i))

) (11)

where α controls the steepness of the logistic function. Fig-
ure 3(d) shows the foreground weights, where red and blue
colors depict large and small weights, respectively. We see
that the patches, which are assigned relatively large weights,
reveal the shape of the target object effectively. Thus, we in-
corporate the foreground weights of the patches to concate-
nate the patch descriptors in (4), and consequently obtain
the proposed SOWP descriptor, given by

Φ(xt,yt) = [ρt(1)f1
T , · · · ,ρt(64)f64

T ]T . (12)

Figure 4 exemplifies the evolution of computed fore-
ground weights, which reflect the shapes of target objects
over time faithfully. In particular, without the adaptive
weighting, the tracking fails on the “Singer2” and “Car4”
sequences in Figure 2. On the contrary, by using the fore-
ground weights, the proposed tracker successfully trace the
target objects in these sequences in Figure 4. It is worth
pointing out that adaptive foreground weights implicitly re-
shape rectangular bounding boxes according to the defor-
mation of target objects at different frames, and thus facili-
tate more reliable object description, especially when a tar-
get object is occluded or changes its shape and size.
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Figure 4. The evolution of patch weights through video sequences.

4.3. Tracking

We apply the proposed SOWP descriptor to trace a target
object, by incorporating it into the conventional tracking-
by-detection algorithm, Struck [18], which excels in the re-
cent benchmark in [38]. Although Struck is adopted in this
work, the SOWP descriptor also can be combined with other
tracking-by-detection algorithms, such as [5, 40].

Given the object bounding box in a previous frame,
we set a searching window, centered at the correspond-
ing bounding box in the current frame. We construct the
SOWP descriptor for each candidate bounding box within
the searching window. Then, we select the optimal bound-
ing box to yield the maximum classification score, and up-
date the object location. We then update the foreground
weights of the patches and the classifier. Finally, we pro-
ceed to the next frame.

Struck updates the classifier, even when an object
changes its appearance abruptly, e.g., due to illumination
variation and severe occlusion. In such cases, the classi-
fier is trained with corrupted samples, degrading the track-
ing performance. To overcome this issue, we detect abrupt
changes of object appearance. We define a confidence score
θt to measure the reliability of the object bounding box in
the tth frame. Specifically, θt is defined as the average sim-
ilarity between the SOWP descriptor of the object bounding
box and the positive support vectors, given by

θt =
1

|St|
∑
s∈St

〈s,Φ(xt,yt)〉 (13)

where St is the set of the positive support vectors at time
instance t. Note that the positive support vectors provide a
compact summary of the object appearance in the previous
frames [18]. Therefore, we update the classifier only when
the confidence scores are greater than a threshold η.

5. Experimental Results

Implementation Details The proposed algorithm is imple-
mented in C++ and performed at about 7.3 frames per sec-
ond with an i7-4707HQ 2.40GHz CPU. We employ a linear
kernel for the structured output SVM. The parameters are
empirically set as γ = 5.0 in (5), ε = 0.75 in (7), α = 35
in (11), and η = 0.3 as the confidence score threshold.
For computational efficiency, we scale each frame so that
the minimum side length of a bounding box is 32 pixels.
The side length of a searching window is fixed to 2

√
WH ,

where W and H denote the width and height of the scaled
bounding box, respectively.

CVPR2013 Visual Tracking Benchmark We evaluate
the performance of the proposed tracker on the CVPR2013
visual tracking benchmark dataset [38] in Section 5.1 and
Section 5.2. Precision (PR) and success rate (SR) are used
to measure the quantitative performances of a tracker. The
precision is the ratio of the frames, in which the distance
between an estimated object location and the ground truth
is smaller than a threshold. The success rate is the ratio of
the frames, in which the overlap ratio between an estimated
bounding box and the ground truth is larger than a thresh-
old. In particular, the precision at the distance threshold of
20 pixels is employed as the representative PR score, and
the average success rate, which is the area under the suc-
cess rate curve over all overlap thresholds, is used as the
representative SR score.

VOT2014 Challenge For more comprehensive evaluation,
we also run the proposed tracker on the VOT2014 challenge
dataset [28], which is an extended version of [27], in Sec-
tion 5.3. Accuracy (ACC) and robustness (ROB) are used
to assess the performance of a tracker. The accuracy com-
putes the overlap ratio between an estimated bounding box
and the ground truth. The robustness indicates the number
of tracking failures, i.e., the number of frames in which the
overlap ratios are zero.



Table 1. PR/SR scores of the SOP and SOWP descriptors using
various low-level features. A boldface number denotes the highest
score of each descriptor in terms of each measure. The best PR/SR
scores are achieved by the SOWP using ‘RGB+Gradient’ features,
which is hence employed in the proposed algorithm.

SOP SOWP Parameter
RGB 0.775 / 0.568 0.805 / 0.573 γ = 10.0
Lab 0.761 / 0.550 0.775 / 0.559 γ = 20.0
HSV 0.762 / 0.545 0.768 / 0.564 γ = 20.0
Intensity 0.731 / 0.526 0.765 / 0.543 γ = 10.0
RGB + Gradient 0.805 / 0.577 0.870 / 0.604 γ = 5.00
Lab + Gradient 0.820 / 0.580 0.838 / 0.579 γ = 5.00
HSV + Gradient 0.791 / 0.565 0.865 / 0.603 γ = 10.0
Intensity + Gradient 0.772 / 0.558 0.839 / 0.586 γ = 10.0

5.1. Component Analysis

Let us analyze the amount of the performance gain,
which is achieved by each component of the proposed al-
gorithm. Table 1 compares the performances of the de-
scriptors using various low-level features on the benchmark
dataset [38]. SOP uses the spatially ordered patch descrip-
tor only. On the other hand, SOWP performs the patch
weighting, based on RWR, in addition to SOP. Each color
histogram is 24-dimensional, while each intensity or gradi-
ent histogram is 8-dimensional. We set different values of
the parameter γ in (5), to take into account the characteris-
tics of different features when computing the patch similar-
ity. From Table 1, we can make the following observations:
First, the SOP descriptor with the simple intensity feature
only provides even better PR/SR scores than the best track-
ing performances (PR 0.656 by Struck [18] and SR 0.499 by
SCM [42]) reported in the benchmark [38]. Second, the per-
formance of the SOP descriptor is improved by combining
a color histogram with a gradient histogram, which convey
different types of information about an object. Third, the
SOWP descriptor further improves the performance of SOP,
regardless of the used features, by employing the adaptive
patch weighting and reducing the impacts of background
information in a bounding box. Last, the SOWP descriptor
yields the best performance when using RGB color and gra-
dient features together. Therefore, this combination of RGB
and gradient histograms is adopted for the SOWP descriptor
in the proposed algorithm.

Table 2 shows the performance gains of three versions
of the proposed algorithm over the base tracker, Struck [18].
While Struck describes a bound box with Haar-like features,
SOP descriptor divides the box into patches and describes
each patch using RGB and gradient features. This simple
modification improves the PR and SR scores by 22.7% and
21.7%, respectively. Moreover, by performing the adaptive
patch weighting, the proposed SOWP descriptor further im-
proves the performances and outperforms Struck by 32.6%
and 27.4%. Finally, SOWP+SU, which uses the SOWP de-

Table 2. The performance of three versions of the proposed algo-
rithm, as compared with the Struck algorithm [18]. Numbers in
parenthesis are the performance gains over Struck.

Struck SOP SOWP SOWP+SU
PR 0.656 0.805 (22.7%) 0.870 (32.6%) 0.894 (36.3%)
SR 0.474 0.577 (21.7%) 0.604 (27.4%) 0.619 (30.6%)

scriptor together with the selective classifier update in Sec-
tion 4.3, achieves 36.3% better PR score and 30.6% better
SR score than Struck.

5.2. Comparison with Conventional Trackers

Next, we compare the performances of the proposed al-
gorithm (SOWP+SU) with those of the 29 conventional
trackers whose results were reported in [38]. Figure 5
presents the PR and SR curves of the top ten trackers in
the one-pass evaluation (OPE). Notice that the proposed al-
gorithm outperforms the second best trackers significantly,
achieving 36.3% gain over Struck in PR and 24.1% gain
over SCM in SR. In supplemental materials, we show that
the proposed algorithm also provides the best performances
in the spatial robustness evaluation (SRE) and the temporal
robustness evaluation (TRE) as well.

Table 3 compares the PR/SR scores of the proposed and
conventional trackers according to various challenging fac-
tors. We see that the proposed algorithm always yields the
best scores in terms of both PR and SR metrics. In partic-
ular, the proposed algorithm achieves relatively larger per-
formance gains, as compared with the second best trackers,
when target objects experience deformation or occlusion.
Even when a target object changes its shape due to defor-
mation, the proposed algorithm can reflect this structural
change by updating patch weights adaptively. Also, in case
of occlusion, the proposed algorithm efficiently suppresses
the weights of background patches within a bounding box,
based on the RWR simulation. Note that, for scale variation,
the proposed algorithm yields a relatively low SR score, but
maintains a high PR score. The SR performance, based
on the overlap ratio between true and estimated bounding
boxes, is degraded, since we do not adapt the size of a
bounding box in this work. However, even when an ob-
ject size varies, the proposed algorithm still estimates the
object location accurately through the adaptive weighting
of patches, yielding the high PR score.

Figure 6 compares the proposed algorithm with the five
best conventional trackers in the benchmark. The “Bas-
ketball,” “Bolt,” “Lemming,” “Liquor,” and “Tiger1” se-
quences contain object deformation, occlusion, or cluttered
backgrounds. Hence the conventional trackers cannot trace
the target objects accurately on these sequences. For exam-
ple, Struck loses the target sprinter on the “Bolt” sequence,
due to another sprinter with similar appearance. In con-
trast, the proposed algorithm tracks the target successfully.
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Figure 5. Comparison of the PR/SR plots in the OPE method. The representative scores in parenthesis measure the PR score at the
threshold of 20 pixels and the average SR score over all overlap thresholds, respectively.

Table 3. Comparison of the PR/SR scores in the OPE method, according to 11 challenging factors: IV (illumination variation), SV (scale
variation), OCC (occlusion), DEF (deformation), MB (motion blur), FM (fast motion), IPR (in-plane-rotation), OPR (out-of-plane rotation),
OV (out-of-view), BC (background clutters), and LR (low resolution). Numbers in parenthesis in the first column refer to the numbers of
sequences with the corresponding attributes. A boldface number denotes the highest score in each test.

ASLA [23] CXT [11] CSK [20] LSK [34] VTD [29] VTS [30] TLD [24] SCM [42] Struck [18] Proposed
IV(25) 0.517 / 0.429 0.501 / 0.368 0.481 / 0.369 0.449 / 0.371 0.557 / 0.420 0.573 / 0.429 0.537 / 0.399 0.594 / 0.473 0.558 / 0.428 0.842 / 0.596
SV(28) 0.552 / 0.452 0.550 / 0.389 0.503 / 0.350 0.480 / 0.373 0.597 / 0.405 0.582 / 0.400 0.606 / 0.421 0.672 / 0.518 0.639 / 0.425 0.849 / 0.523
OCC(29) 0.460 / 0.376 0.491 / 0.372 0.500 / 0.365 0.534 / 0.409 0.545 / 0.403 0.534 / 0.398 0.563 / 0.402 0.640 / 0.487 0.564 / 0.413 0.867 / 0.603
DEF(19) 0.445 / 0.372 0.422 / 0.324 0.476 / 0.343 0.481 / 0.377 0.501 / 0.377 0.487 / 0.368 0.512 / 0.378 0.586 / 0.448 0.521 / 0.393 0.918 / 0.666
MB(12) 0.278 / 0.258 0.509 / 0.369 0.342 / 0.305 0.324 / 0.302 0.375 / 0.309 0.375 / 0.304 0.518 / 0.404 0.339 / 0.298 0.551 / 0.433 0.716 / 0.567
FM(17) 0.253 / 0.247 0.515 / 0.388 0.381 / 0.316 0.375 / 0.328 0.352 / 0.302 0.353 / 0.300 0.551 / 0.417 0.333 / 0.296 0.604 / 0.462 0.744 / 0.575
IPR(31) 0.511 / 0.425 0.610 / 0.452 0.547 / 0.399 0.534 / 0.411 0.599 / 0.430 0.579 / 0.416 0.584 / 0.416 0.597 / 0.458 0.617 / 0.444 0.847 / 0.584
OPR(39) 0.518 / 0.422 0.574 / 0.418 0.540 / 0.386 0.525 / 0.400 0.620 / 0.434 0.604 / 0.425 0.596 / 0.420 0.618 / 0.470 0.597 / 0.432 0.896 / 0.615
OV(6) 0.333 / 0.312 0.510 / 0.427 0.379 / 0.349 0.515 / 0.430 0.462 / 0.446 0.455 / 0.443 0.576 / 0.457 0.429 / 0.361 0.539 / 0.459 0.802 / 0.635
BC(21) 0.496 / 0.408 0.443 / 0.345 0.585 / 0.421 0.504 / 0.388 0.571 / 0.425 0.578 / 0.338 0.428 / 0.428 0.578 / 0.450 0.585 / 0.458 0.839 / 0.618
LR(4) 0.156 / 0.157 0.371 / 0.312 0.411 / 0.350 0.304 / 0.235 0.168 / 0.177 0.187 / 0.168 0.349 / 0.309 0.305 / 0.279 0.545 / 0.372 0.606 / 0.410
Average(50) 0.532 / 0.434 0.575 / 0.426 0.545 / 0.398 0.000 / 0.395 0.576 / 0.416 0.575 / 0.416 0.608 / 0.437 0.649 / 0.499 0.656 / 0.474 0.894 / 0.619

Table 4. Comparison of the PR/SR scores of the proposed tracker and recent state-of-the-art trackers in the OPE method, according to the
11 challenging factors. For the descriptions of the challenging factors, refer to the caption of Table 3

KCF [21] DSST [9] SAMF [1] LLP [39] MQT [22] TGPR [14] DDCT [5] MEEM [40] MTA [32] Proposed
IV(25) 0.728 / 0.493 0.727 / 0.534 0.735 / 0.563 0.720 / 0.525 0.628 / 0.489 0.687 / 0.486 0.665 / 0.499 0.778 / 0.548 0.738 / 0.547 0.842 / 0.596
SV(28) 0.679 / 0.427 0.723 / 0.516 0.730 / 0.541 0.644 / 0.498 0.692 / 0.464 0.703 / 0.443 0.687 / 0.484 0.809 / 0.506 0.721 / 0.478 0.849 / 0.523
OCC(29) 0.749 / 0.514 0.845 / 0.619 0.716 / 0.534 0.710 / 0.524 0.654 / 0.519 0.708 / 0.494 0.723 / 0.534 0.815 / 0.560 0.772 / 0.563 0.867 / 0.603
DEF(19) 0.740 / 0.534 0.813 / 0.622 0.660 / 0.510 0.754 / 0.566 0.785 / 0.589 0.768 / 0.556 0.804 / 0.602 0.859 / 0.582 0.851 / 0.622 0.918 / 0.666
MB(12) 0.650 / 0.497 0.651 / 0.519 0.547 / 0.464 0.533 / 0.427 0.618 / 0.488 0.578 / 0.440 0.691 / 0.553 0.740 / 0.565 0.695 / 0.540 0.716 / 0.567
FM(17) 0.602 / 0.459 0.663 / 0.515 0.517 / 0.435 0.586 / 0.444 0.614 / 0.494 0.575 / 0.441 0.685 / 0.534 0.757 / 0.568 0.677 / 0.524 0.744 / 0.575
IPR(31) 0.725 / 0.497 0.691 / 0.507 0.765 / 0.560 0.652 / 0.477 0.671 / 0.482 0.706 / 0.487 0.720 / 0.524 0.810 / 0.531 0.773 / 0.547 0.847 / 0.584
OPR(39) 0.729 / 0.495 0.763 / 0.554 0.733 / 0.535 0.622 / 0.470 0.711 / 0.521 0.741 / 0.507 0.726 / 0.518 0.854 / 0.566 0.777 / 0.557 0.896 / 0.615
OV(6) 0.650 / 0.550 0.708 / 0.609 0.515 / 0.459 0.639 / 0.511 0.484 / 0.502 0.495 / 0.431 0.622 / 0.524 0.730 / 0.597 0.612 / 0.534 0.802 / 0.635
BC(21) 0.753 / 0.535 0.708 / 0.524 0.694 / 0.517 0.659 / 0.488 0.673 / 0.518 0.761 / 0.543 0.660 / 0.502 0.808 / 0.578 0.795 / 0.592 0.839 / 0.618
LR(4) 0.381 / 0.312 0.459 / 0.361 0.497 / 0.409 0.256 / 0.230 0.461 / 0.326 0.539 / 0.351 0.526 / 0.411 0.494 / 0.367 0.579 / 0.397 0.606 / 0.410
Average(50) 0.740 / 0.514 0.777 / 0.570 0.737 / 0.554 0.723 / 0.543 0.723 / 0.529 0.759 / 0.539 0.762 / 0.557 0.840 / 0.570 0.812 / 0.583 0.894 / 0.619

In “Ironman” and “Matrix,” the targets change their appear-
ances abruptly at 34th and 2nd frames, respectively, which
causes false updates of the conventional trackers. However,
the proposed algorithm skips updating the classifier on such
frames and thus traces the target objects more reliably.

In Table 4, we also compare the proposed tracker
with recent state-of-the-art trackers, which are not in the
benchmark: KCF [21], DSST [9], SAMF [1], LLP [39],
MQT [22], DDCT [5], TGPR [14], MEEM [40], MTA [32].
We use the PR/SR scores reported in the literatures for the
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Figure 6. Comparison of tracking results of the proposed algorithm and the conventional methods: ASLA [23], CXT [11], TLD [24],
SCM [42], and Struck [18].

LLP, and obtain the scores using the published codes or re-
sults for the other trackers. We observe that the proposed
algorithm still achieves the best performance, as compared
with these recent trackers. Also note that the proposed
tracker is relatively simple, whereas MEEM and MTA re-
quire multiple base trackers to restore corrupted classifiers
or false trajectories. Despite that, the proposed algorithm
achieves performance gains of 6.4% in the PR score over
MEEM and 6.2% in the SR score over MTA.

5.3. Results on VOT2014 Challenge Dataset

Finally, we evaluate the performance of the proposed al-
gorithm on the VOT2014 challenge dataset [28]. Table 5
compares the proposed tracker with the top three trackers
DSST [9], SAMF [1], and KCF [21] in the VOT2014 chal-
lenge. Two types of tests are carried out. In the baseline
test, a tracker is initialized with a ground truth. On the
other hand, in the region noise test, a tracker gets a per-
turbed ground truth.

It can be observed from Table 5 that the proposed tracker
provides relatively low ACC scores, but achieves the best
ROB performances in both tests. This can be explained
by the re-initialization step in the evaluation methodology
in [28]. When a tracking failure is detected, re-initialization
is triggered. Then, a tracker obtains a new ground truth
to trace a target object in remaining frames. However,
each new ground truth tends to improve the overlap ra-
tio. In other words, the top three trackers fail more fre-
quently than the proposed tracker, they request more ground
truths, and thus they yield higher overlap ratios. To con-
firm these effects of the re-initialization, we perform an ad-
ditional experiment without the re-initialization step. The
proposed tracker yields the best ACC scores without the re-

Table 5. Comparison of the proposed tracker and the top three
trackers in the VOT2014 challenge [28]. ‘ACC w/o’ denotes the
ACC score without the re-initialization step. The best performance
in each test is in boldface.

Baseline Region Noise
ACC ROB ACC w/o ACC ROB ACC w/o

DSST [9] 0.622 1.160 0.469 0.578 1.283 0.432
SAMF [1] 0.616 1.280 0.504 0.572 1.435 0.484
KCF [21] 0.629 1.320 0.395 0.575 1.515 0.360
Proposed 0.575 0.560 0.515 0.552 0.685 0.486

initialization (ACC w/o) in Table 5.

6. Conclusions

In this work, we proposed an efficient object descriptor,
called SOWP, to achieve accurate and robust visual track-
ing. We first divided a bounding box into multiple local
patches, and extracted color and gradient histogram fea-
tures at each patch. We then described the object appear-
ance by concatenating the spatially ordered patch descrip-
tors. We also assigned different weights to those patches
adaptively according to their relevance to the object appear-
ance, by performing the RWR simulations of the foreground
and background random walkers. We thus suppressed the
background information efficiently. We incorporated the
SOWP descriptor into the structured output tracking frame-
work [18]. Experimental results demonstrated that the pro-
posed algorithm significantly outperforms all 29 trackers in
the CVPR2013 benchmark [38], as well as the recent state-
of-the-art trackers in [21, 9, 1, 39, 5, 22, 14, 40, 32]. More-
over, the proposed algorithm also excels on the VOT2014
challenge dataset.
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