# KECE471 Computer Vision 

## Binary Image Analysis

## Chang-Su Kim

## Binary Images

- Binary image B
- $\mathbf{B}[r, c]$ : binary value of the pixel at row $r$ and column c
$-\mathbf{B}[r, c]=1:[r, c]$ is a foreground (or black) pixel
$-\mathbf{B}[r, c]=0:[r, c]$ is a background (or white) pixel



## Neighborhoods

- 4-neighborhood $N_{4}$
- $\{A, B, C, D\}$ is the 4-neighborhood of $X$
$-A$ neighbors $X$ in the context of 4-neighborhood
- 8-neighborhood $N_{8}$
- $\{A, B, C, D, E, F, G, H\}$ is the 8neighborhood of $X$
$-C$ or $F$ neighbors $X$ in the context
 of 8 -neighborhood


## Applying Masks to Images

- It is like convolution
- For each pixel in the input image
- Place the mask on top of the image with its origin lying on the pixel
- Multiply the value of each input image pixel under the mask by the weight of the corresponding mask pixel, and then add those products together
- Put the sum into the output image at the location of the input pixel being processed


## Applying Masks to Images

Ex)

| 40 | 40 | 80 | 80 | 80 |
| :--- | :--- | :--- | :--- | :--- |
| 40 | 40 | 80 | 80 | 80 |
| 40 | 40 | 80 | 80 | 80 |
| 40 | 40 | 80 | $\mathbf{8 0}$ | 80 |
| 40 | 40 | 80 | 80 | $\mathbf{8}$ |$\quad$| 1 | 2 | 1 |
| :--- | :--- | :--- |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

(a) Original grayłone image (b) $3 \times 3$ mask

| 640 | 800 | 1120 | 1280 | 1280 |
| :--- | :--- | :--- | :--- | :--- |
| 640 | 800 | 1120 | 1280 | 1280 |
| 640 | 800 | 1120 | 1280 | 1280 |
| 640 | 800 | 1120 | 1280 | 1280 |
| 640 | 800 | 1120 | 1280 | 1280 |

(c) Result of applying the mask to the image
(d) Normalized result after division by the sum of the weights in the mask (16)

## Counting Objects in an Image



How many objects are there?

## Counting Objects in an Image

- How can a computer count them?
- One approach is using the corner patterns

External Corners


Internal Corners


## Counting Objects in an Image



There are 11 external corners $(E=11)$

## Counting Objects in an Image



There are three internal corners $(\mathrm{I}=3)$

## Counting Objects in an Image

> \# of objects = (E - I)/4

- In an object, E-I = 4
- This is obvious for a rectangle ( $\mathrm{E}=4, \mathrm{I}=0$ )
- When you remove or paste a black pixel, it does not change the difference
- The formula does not hold if
- different objects share a vertex or
- objects contains holes



## Sketch of Proof

## \# of objects = (E - I)/4

## External Corners



Internal Corners


## connectecness

- A pixel $[r, c]$ is connected to another pixel $\left[r^{\prime}, c^{\prime}\right]$ with respect to value $v$
- if there is a sequence of pixels

$$
\begin{equation*}
[r, c]=\left[r_{0}, c_{0}\right],\left[r_{1}, c_{1}\right], \ldots,\left[r_{n}, c_{n}\right]=\left[r^{\prime}, c^{\prime}\right] \tag{1}
\end{equation*}
$$

such that

$$
\begin{aligned}
& \boldsymbol{B}\left[r_{i}, c_{i}\right]=v \text { for all } 0 \leq i \leq n \text { and } \\
& {\left[r_{i}, c_{i}\right] \text { neighbors }\left[r_{i-1}, c_{i-1}\right] \text { for all } 1 \leq i \leq n}
\end{aligned}
$$

- The sequence in (1) is called a path from $[r, c]$ to $\left[r^{\prime}, c^{\prime}\right]$
- A connected component is a maximum set of pixels, such that every pair of pixels in the set are connected.
Note: all definitions can be made in terms of the 4neighborhood or 8-neighborhood.


## Connectedness



- 4-neighborhood
- $A$ and $H$ are connected
- $A$ and $K$ are not connected
- $(A, D, H)$ is a path from $A$ to $H$
- $\{A, B, C, D, E, F, G, H\}$ is a connected component
- 8-neighborhood
- $A$ and $H$ are connected
- $A$ and $K$ are connected
- $(A, D, H, J, K)$ is a path from $A$ to $K$
- $\{A, B, C, D, E, F, G, H\}$ is not a connected component


## Connected Components Labeling

- A connected components labeling of a binary image $\boldsymbol{B}$ is a labeled image $\boldsymbol{L}$ in which the value of each foreground pixel is the label of its connected components
- backgroud pixels are assigned 0


B

|  |  |  |  | 0 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 |  | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |  |
| 0 |  |  | 0 | 0 |  |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |

L

## Connected Components Labeling

- A connected components labeling of a binary image $\mathbf{B}$ is a labeled image $\mathbf{L}$ in which the value of each foreground pixel is the label of its connected components
- backgroud pixels are assigned 0


B

| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 2 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 2 |
| 0 | 0 | 0 | 0 | 0 | 3 | 0 | 2 |
| 4 | 4 | 4 | 4 | 0 | 3 | 0 | 2 |
| 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 |
| 0 | 0 | 0 | 4 | 0 | 2 | 2 | 2 |

$L$

## Connected Components Labeling

- Two algorithms
- Recursive labeling
- Random access to the whole image is possible
- Row-by-row labeling
- Image is big and processed in row-by-row manner
- Only two rows are processed at a time
- Self-study


## Recursive Labeling

```
void recurisve_labeling(B, L)
{
    L = negate(B); // 1 -> -1
    label = 0;
    find_components(L, label);
    print(L);
}
void find_components(L, label)
{
    for(r=0 to MaxR) for(c=0 to MaxC)
    if(L(r, c) == -1){
        label++;
        search(L, label, r, c)
    }
}
void find_components(L, label)
```

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | 1 | 1 | 1 |  |  | 1 |  |
|  |  | 1 | 1 |  | 1 | 1 |  |
|  |  | 1 |  |  | 1 |  |  |
|  |  |  |  |  |  |  |  |


|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | -1 |  |  |  |  |  |
|  | -1 | -1 | -1 |  |  | -1 |  |
|  |  | -1 | -1 |  | -1 | -1 |  |
|  |  | -1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Recursive Labeling

void search(L, label, r, c)
\{
$\mathrm{L}[\mathrm{r}, \mathrm{c}]=$ label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c] for each [ $\left.r^{\prime}, c^{\prime}\right]$ in Nset \{

$$
i f\left(L\left[r^{\prime}, c^{\prime}\right]==-1\right)
$$

search( $\mathbf{L}$, label, $\mathrm{r}^{\prime}, \mathrm{c}^{\prime}$ ); // recursion
\}
\}
$\mathrm{r}=1, \mathrm{c}=2$, label $=1$

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | -1 | -1 | -1 |  |  | -1 |  |
|  |  | -1 | -1 |  | -1 | -1 |  |
|  |  | -1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Recursive Labeling

void search(L, label, r, c)
\{
$\mathrm{L}[\mathrm{r}, \mathrm{c}]=$ label;
Nset = neighbors( $\mathrm{r}, \mathrm{c}$ ); // Nset becomes the 4-neighborhood of $[r, c]$ for each [ $\left.r^{\prime}, c^{\prime}\right]$ in Nset \{

$$
i f\left(L\left[r^{\prime}, c^{\prime}\right]==-1\right)
$$

search(L, label, $\left.r^{\prime}, c^{\prime}\right) ; \quad / /$ recursion
\}

Nset contains
north, west, east, south pixels in that order

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | -1 | -1 | -1 |  |  | -1 |  |
|  |  | -1 | -1 |  | -1 | -1 |  |
|  |  | -1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Recursive Labeling

void search(L, label, r, c)
\{
$\mathrm{L}[\mathrm{r}, \mathrm{c}]=$ label;
Nset = neighbors( $r$, c); // Nset becomes the 4-neighborhood of [r, c] for each [ $\left.r^{\prime}, c^{\prime}\right]$ in Nset \{

$$
i f\left(L\left[r^{\prime}, c^{\prime}\right]==-1\right)
$$

search(L, label, r', c'); // recursion
\}
\}

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | -1 | 1 | -1 |  |  | -1 |  |
|  |  | -1 | -1 |  | -1 | -1 |  |
|  |  | -1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Recursive Labeling

void search(L, label, r, c)
\{
$\mathrm{L}[\mathrm{r}, \mathrm{c}]=$ label;
Nset = neighbors( $r$, c); // Nset becomes the 4-neighborhood of [r, c] for each [ $\left.r^{\prime}, c^{\prime}\right]$ in Nset \{

$$
i f\left(L\left[r^{\prime}, c^{\prime}\right]==-1\right)
$$

search(L, label, r', c'); // recursion
\}
\}

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | 1 | 1 | -1 |  |  | -1 |  |
|  |  | -1 | -1 |  | -1 | -1 |  |
|  |  | -1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Recursive Labeling

void search(L, label, r, c)
\{
$\mathrm{L}[\mathrm{r}, \mathrm{c}]=$ label;
Nset = neighbors(r, c); // Nset becomes the 4-neighborhood of [r, c] for each [ $\left.r^{\prime}, c^{\prime}\right]$ in Nset \{

$$
i f\left(L\left[r^{\prime}, c^{\prime}\right]==-1\right)
$$

search(L, label, r', c'); // recursion
\}
\}

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | 1 | 1 | 1 |  |  | -1 |  |
|  |  | -1 | -1 |  | -1 | -1 |  |
|  |  | -1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Recursive Labeling

void search(L, label, r, c)
\{
$\mathrm{L}[\mathrm{r}, \mathrm{c}]=$ label;
Nset = neighbors( $r$, c); // Nset becomes the 4-neighborhood of [r, c] for each [ $\left.r^{\prime}, c^{\prime}\right]$ in Nset \{

$$
i f\left(L\left[r^{\prime}, c^{\prime}\right]==-1\right)
$$

search(L, label, r', c'); // recursion
\}
\}

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | 1 | 1 | 1 |  |  | -1 |  |
|  |  | -1 | 1 |  | -1 | -1 |  |
|  |  | -1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Recursive Labeling

void search(L, label, r, c)
\{
$\mathrm{L}[\mathrm{r}, \mathrm{c}]=$ label;
Nset = neighbors( $r$, c); // Nset becomes the 4-neighborhood of [r, c] for each [ $\left.r^{\prime}, c^{\prime}\right]$ in Nset \{

$$
i f\left(L\left[r^{\prime}, c^{\prime}\right]==-1\right)
$$

search(L, label, r', c'); // recursion
\}
\}

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | 1 | 1 | 1 |  |  | -1 |  |
|  |  | 1 | 1 |  | -1 | -1 |  |
|  |  | -1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Recursive Labeling

void search(L, label, r, c)
\{
$\mathrm{L}[\mathrm{r}, \mathrm{c}]=$ label;
Nset = neighbors( $r$, c); // Nset becomes the 4-neighborhood of [r, c] for each [ $\left.r^{\prime}, c^{\prime}\right]$ in Nset \{

$$
i f\left(L\left[r^{\prime}, c^{\prime}\right]==-1\right)
$$

search(L, label, r', c'); // recursion
\}
\}

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | 1 | 1 | 1 |  |  | -1 |  |
|  |  | 1 | 1 |  | -1 | -1 |  |
|  |  | 1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Recursive Labeling

void search(L, label, r, c)
\{
$\mathrm{L}[\mathrm{r}, \mathrm{c}]=$ label;
Nset = neighbors( $r$, c); // Nset becomes the 4-neighborhood of [r, c] for each [ $\left.r^{\prime}, c^{\prime}\right]$ in Nset \{

$$
i f\left(L\left[r^{\prime}, c^{\prime}\right]==-1\right)
$$

search(L, label, r', c'); // recursion
\}
\}

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 |  |  |  |  |  |
|  | 1 | 1 | 1 |  |  | 2 |  |
|  |  | 1 | 1 |  | -1 | -1 |  |
|  |  | 1 |  |  | -1 |  |  |
|  |  |  |  |  |  |  |  |

## Review of Recursion

```
int FiboR (int n)
{
    if(n<=1) return 1;
    else
        return FiboR(n-1)+FiboR(n-2);
}
```

```
int FiboD (int n)
{
    if(n<=1) return 1;
    else{
        int *temp = new int[n+1];
        temp[0] = temp[1] = 1;
        for(int i=2; i<=n; i++)
            temp[i] = temp[i-1]+temp[i-2];
    int result = temp[n];
    delete temp;
    return result;
    }
}

\section*{Binary Image Morphology}
- Structuring elements
- One pixel is denoted as its origin
- Basic operations
- Translation
- Dilation
- Erosion
- Closing
- Opening

Ex) Structuring elements with their origins

\section*{mor-phol-o-gy (môr-fŏl'ə-jē) noun}

Abbr. morph., morphol.
1. a. The branch of biology that deals with the form and structure of organisms without consideration of function. b. The form and
\begin{tabular}{|l|l|l|}
\hline & 1 & \\
\hline 1 & 1 & 1 \\
\hline & 1 & \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|l|l|}
\hline 1 & 1 \\
\hline
\end{tabular}

\section*{Translation}
- The translation \(\mathbf{X}_{\mathrm{t}}\) of a set of pixels \(\mathbf{X}\) by a position vector t
\[
\mathbf{X}_{\mathrm{t}}=\{\mathrm{x}+\mathrm{t} \mid \mathrm{x} \in \mathbf{X}\}
\]
- In this and following definitions, sets contain the coordinates of 1 (black) pixels


What is t ?

\section*{Dilation}
- The dilation of a binary image \(\mathbf{B}\) by a structuring element \(\mathbf{S}\)
\[
\mathbf{B} \oplus \mathbf{S}=\bigcup_{\mathrm{b} \in \mathbf{B}} \mathbf{s}_{\mathrm{b}}
\]
- The structuring element is put over each black pixel in B
- All the black pixels compose the dilation result.


B


S

\(\mathbf{B} \oplus \mathbf{S}\)

\section*{Dilation}
- The dilation of a binary image \(\mathbf{B}\) by a structuring element \(\mathbf{S}\)
\[
\mathbf{B} \oplus \mathbf{S}=\bigcup_{\mathrm{b} \in \mathbf{B}} \mathbf{s}_{\mathrm{b}}
\]
- The structuring element is put over each black pixel in B
- All the black pixels compose the dilation result.



S

\(\mathbf{B} \oplus \mathbf{S}\)

\section*{Erosion}
- The erosion of a binary image B by a structuring element \(\mathbf{S}\)
\[
\mathbf{B} \ominus \mathbf{S}=\left\{\mathrm{t} \mid \mathbf{S}_{\mathrm{t}} \subset \mathbf{B}\right\}
\]
- If the translated \(\mathbf{S}_{\mathrm{t}}\) is wholly contained in \(\mathbf{B}, \mathrm{t}\) is set black in the erosion result


B

\(\mathbf{B} \Theta \mathbf{S}\)

\section*{Erosion}
- The erosion of a binary image B by a structuring element \(\mathbf{S}\)
\[
\mathbf{B} \ominus \mathbf{S}=\left\{\mathrm{t} \mid \mathbf{S}_{\mathrm{t}} \subset \mathbf{B}\right\}
\]
- If the translated \(\mathbf{S}_{\mathrm{t}}\) is wholly contained in \(\mathbf{B}, \mathrm{t}\) is set black in the erosion result


B


S

\(\mathbf{B} \Theta \mathbf{S}\)

\section*{Closing}
- The closing of a binary image \(\mathbf{B}\) by a structuring element \(\mathbf{S}\)
\[
\mathbf{B} \cdot \mathbf{S}=(\mathbf{B} \oplus \mathbf{S}) \ominus \mathbf{S}
\]


\section*{Closing}
- The closing of a binary image B by a structuring element \(\mathbf{S}\)
\[
\mathbf{B} \cdot \mathbf{S}=(\mathbf{B} \oplus \mathbf{S}) \ominus \mathbf{S}
\]


\section*{Closing}
- The closing of a binary image B by a structuring element \(\mathbf{S}\)
\[
\mathbf{B} \cdot \mathbf{S}=(\mathbf{B} \oplus \mathbf{S}) \ominus \mathbf{S}
\]
- Ignoring boundary effects, the closing makes the input bigger
- The closing fills tiny gaps in the input image


B


S


B•S

\section*{Opening}
- The opening of a binary image B by a structuring element \(\mathbf{S}\)
\[
\mathbf{B} \circ \mathbf{S}=(\mathbf{B} \ominus \mathbf{S}) \oplus \mathbf{S}
\]



S

\(\mathbf{B} \ominus \mathbf{S}\)

\section*{Opening}
- The opening of a binary image B by a structuring element \(\mathbf{S}\)
\[
\mathbf{B} \circ \mathbf{S}=(\mathbf{B} \ominus \mathbf{S}) \oplus \mathbf{S}
\]
- The opening makes the input smaller
- The opening erases tiny components or thin extrusions


B


S


B \(\circ \mathbf{S}\)

\section*{Application: Gear-Tooth Inspection}

(a) Original image B

(c) \(\mathbf{B} \mathbf{2}=\mathbf{B} 1 \oplus\) hole_mask

(e) B7 (see text)

\((g) \mathbf{B 9}=\mathbf{B 8} \oplus\) tip_spacing

(b) \(\mathbf{B} 1=\mathbf{B} \ominus\) hole_ring

(d) \(\mathbf{B 3}=\mathbf{B}\) OR \(\mathbf{B} 2\)

\((f) \mathbf{B 8}=\mathbf{B}\) AND \(\mathbf{B} 7\)

(h) RESULT \(=((\mathrm{B} 7-\mathrm{B} 9) \oplus\) defect_cue) OR B9
- Open B3 to remove the teeth (B4)
- Dilate B4 to make it larger (B5)
- Dilate B5 to make it even larger (B6)
- \(\mathrm{B} 7=\mathrm{B} 6-\mathrm{B} 5\)

\section*{Region Properties}
- Let \(R\) denote a region or the set of its pixel coordinates
- Area \(A=\sum_{(r, c) \in R} 1\)
- Centroid \((\bar{r}, \bar{c})\)
\[
\bar{r}=\frac{1}{A} \sum_{(r, c) \in R} r \text { and } \bar{c}=\frac{1}{A} \sum_{(r, c) \in R} c
\]


\section*{Region Properties}
- Perimeter
- 4-connected perimeter
\[
P_{4}=\left\{(r, c) \in R \mid N_{8}(r, c)-R \neq \phi\right\}
\]
- 8-connected perimeter
\[
P_{8}=\left\{(r, c) \in R \mid N_{4}(r, c)-R \neq \phi\right\}
\]


\section*{Region Properties}
- Perimeter length


\section*{Region Properties}
- Haralick's circularity measure
\[
\begin{aligned}
C & =\frac{\mu}{\sigma} \\
& =\frac{\frac{1}{K} \sum_{k=0}^{K-1}\left\|\left(r_{k}, c_{k}\right)-(\bar{r}, \bar{c})\right\|}{\left(\frac{1}{K} \sum_{k=0}^{K-1}\left[\left\|\left(r_{k}, c_{k}\right)-(\bar{r}, \bar{c})\right\|-\mu\right]^{2}\right)^{1 / 2}}
\end{aligned}
\]
\(-\left(r_{k}, c_{k}\right)\) : border pixels on the perimeter
- K : the number of border pixels
\(-C\) is bigger as the region is more circular

\section*{Region Properties}
- Spatial moments
- Second-order row moment
\[
\mu_{r r}=\frac{1}{A} \sum_{(r, c) \in R}(r-\bar{r})^{2}
\]
- Second-order column moment
\[
\mu_{c c}=\frac{1}{A} \sum_{(r, c) \in R}(c-\bar{c})^{2}
\]
- Second-order mixed moment
\[
\mu_{r c}=\frac{1}{A} \sum_{(r, c) \in R}(r-\bar{r})(c-\bar{c})
\]

\section*{Region Adjacency Graph (RAG)}
- Two regions \(\mathbf{A}\) and \(\mathbf{B}\) are adjacent if a pixel in \(\mathbf{A}\) neighbors a pixel in \(\mathbf{B}\)
- In RAG, each node represents a region of the image, and an edge connects two nodes if the corresponding regions are adjacent


\title{
Thresholding Gray-Scale Images to Make Binary Images
}
- The histogram h of an image \(\mathbf{I}\) is a function, given by
\(-h(m)=\) the number of pixels in I which have value \(m\)


\section*{Thresholding Gray-Scale Images to Make Binary Images}
```

