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Abstract

A semi-supervised online video object segmentation al-
gorithm, which accepts user annotations about a target ob-
ject at the first frame, is proposed in this work. We propa-
gate the segmentation labels at the previous frame to the
current frame using optical flow vectors. However, the
propagation is error-prone. Therefore, we develop the con-
volutional trident network (CTN), which has three decod-
ing branches: separative, definite foreground, and definite
background decoders. Then, we perform Markov random
field optimization based on outputs of the three decoders.
We sequentially carry out these processes from the second
to the last frames to extract a segment track of the target ob-
ject. Experimental results demonstrate that the proposed al-
gorithm significantly outperforms the state-of-the-art con-
ventional algorithms on the DAVIS benchmark dataset.

1. Introduction
Video object segmentation aims at clustering pixels in

videos into objects or background. In general, video ob-
ject segmentation algorithms can be grouped into three
categories: unsupervised, semi-supervised, and supervised
ones. Unsupervised algorithms [11, 27, 28, 33, 35, 53] do
not require any annotations about objects. Instead of an-
notations, they discover primary objects in videos using
objectness, saliency, and motion cues. While some algo-
rithms [11, 35, 53] yield a single segment track, the oth-
ers [27, 28, 33] produce multiple segment tracks. Semi-
supervised algorithms [15, 37, 40, 54] track and segment a
target object (or foreground), which is annotated by a user
in the first frame. Supervised algorithms [1, 12, 13] take
user annotations interactively during the segmentation pro-
cess. Although they yield a fine segment track, the annota-
tion tasks can be burdensome for users.

With explosive researches in deep learning, there are re-
markable advances in many vision problems, e.g., object
detection [18], contour detection [57], and semantic seg-
mentation [7]. The encoder-decoder architecture [20] is
widely used in deep learning systems [7,29,32,38,57]. The

encoder extracts features from an input image. The con-
volutional neural networks [18, 25, 45, 47], trained for im-
age classification, are fine-tuned and used as the encoder
in many cases. Since image classification attempts to iden-
tify the class of an object in an image [43], the trained net-
works extract high-level features effectively. The decoder
design varies more according to applications. For exam-
ple, pixel-level classification algorithms (e.g. contour de-
tection [57] and semantic segmentation [32]) adopt convo-
lution layers with unpooling layers in the decoder. On the
contrary, fully connected layers are used for image-level
classification problems (e.g. image classification [45] and
object detection [41]). In this work, we design decoders
for semi-supervised video object segmentation. To the best
of our knowledge, this is the first deep learning-based ap-
proach to semi-supervised video object segmentation.

We propose a semi-supervised online segmentation al-
gorithm, which can separate a target object from the back-
ground sequentially from the first to last frames with mini-
mum user efforts at the first frame only. To track and seg-
ment the target object, we develop the convolutional trident
network (CTN), which has the encoder-decoder architec-
ture. The CTN outputs three probability maps from three
decoding branches: separative, definite foreground, and
definite background decoders. First, we propagate a seg-
mentation label map from the previous frame to the current
frame. We then predict the three probability maps via the
CTN. The three maps are tailored for a two-class Markov
random field (MRF) optimization problem. At the begin-
ning of the MRF optimization, we assign initial pixel la-
bels by thresholding the separative probability map. Also,
we use the definite foreground and background maps to dis-
cover the pixels that should be definitely labeled as the fore-
ground and the background, respectively. By fixing the la-
bels on these definite pixels, the MRF optimizer extracts
the target object more precisely. We perform these pro-
cesses from the second to the last frames. Experimental
results show that the proposed algorithm outperforms the
state-of-the-art conventional algorithms [12, 31, 37, 40] on
the DAVIS dataset [36]. Three major contributions of this
work are:



. Development of the effective CTN, which yields three
tailored probability maps for the MRF optimization.

. Implementation of a fast online algorithm for segment-
ing long videos in practical applications.

. Remarkable performance on the DAVIS benchmark
dataset, which consists of challenging videos.

2. Related Work
2.1. Unsupervised Video Object Segmentation

Unsupervised video object segmentation is a task to ex-
tract segment tracks of primary objects in a video. A pri-
mary object appears frequently across frames in a video.
Inspired by this, early approaches [4, 14, 34, 44] perform
motion segmentation to yield sparse point trajectories, and
transform the sparse trajectories into dense segment tracks
using converting methods such as [14, 33]. Instead of the
point tracking, [27, 28, 30, 59] connect object proposals [9]
across frames in a video.

To discover visually important objects in a video, [11,
35, 53] employ saliency detection techniques. Papazoglou
and Ferrari [35] compute a motion saliency map, called the
inside-outside map, using optical flow boundaries. Fak-
tor and Irani [11] exploit both motion saliency and visual
saliency to separate a segment track from the background.
Wang et al. [53] first compute a spatiotemporal saliency
map using geodesic distances, and then perform energy
minimization based on a global appearance model and a
per-frame location model.

Recently, Jang et al. [23] delineate a primary object
in a video based on the alternate convex optimization of
the foreground and background distributions. Xiao and
Lee [55] first generate box tracks containing objects, and
then apply a pixel-wise segmentation scheme to these
boxes. Bideau and Learned-Miller [2] discover differently
moving objects by considering angles and magnitudes of
optical flow vectors.

2.2. Semi-Supervised Video Object Segmentation

In semi-supervised video object segmentation, a target
object is identified by a user at the first frame, and then
tracked automatically in subsequent frames. Note that semi-
supervised algorithms can be categorized into offline or on-
line ones. Offline algorithms separate the target object from
the background in all frames simultaneously. On the con-
trary, online (or streaming) algorithms perform the task of
tracking and segmentation sequentially from the second to
the last frames. While offline algorithms require a huge
memory space for a long video, online ones use a fixed
space regardless of the video duration.
Offline Algorithm: Tsai et al. [49] construct a volumet-
ric graph whose nodes are pixels in all frames, and perform
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Figure 1. The encoder-decoder architecture [20] for solving vision
problems. In this particular example, semantic segmentation is
performed by pixel-level classification, and the object class ‘Bear’
is predicted by image-level classification.

MRF optimization using a target appearance model and a
spatiotemporal coherency model. Jain and Grauman [22]
first generate temporal superpixels in a video, and then de-
fine an energy function to be minimized. In the minimiza-
tion, two pixels are encouraged to have the same label (fore-
ground or background) if they belong to the same temporal
superpixel. Perazzi et al. [37] train a support vector ma-
chine classifier by employing bounding boxes of a target
object as training samples, and then select object proposals
that are highly similar to the target object.
Online Algorithm: Chockalingam et al. [6] partition a tar-
get object into fragments and represent it with a Gaussian
mixture model (GMM), which is used to trace the target ob-
ject in subsequent frames. Chang et al. [5] divide a video
into temporal superpixels, and achieve video object seg-
mentation by selecting the superpixels that overlap with the
target object at the first frame. Ramakanth and Babu [40]
propagate labels from the previous frame to the current
frame using video seams. Varas and Marques [51] perform
the co-clustering between partitions in the previous frame
and the current frame to address object deformation. Wen
et al. [54] over-segment each frame into superpixels to con-
struct multi-part models of a target object. They trace the
target object based on the inter-frame matching, and update
the multi-part models iteratively. Märki et al. [31] construct
a grid model using color and location features of a target
object and the background. The grid model at the previous
frame is applied to the current frame to delineate the tar-
get object. Tsai et al. [50] perform semi-supervised video
object segmentation and optical flow refinement jointly.

Instead of an object mask, online tracking-by-segmen-
tation algorithms [8, 15, 52] accept an object box as user
input. In [8,15], the segmentation of a target object in a box
is achieved by a Hough voting. Wang et al. [52] generate a
superpixel-based appearance model to compute confidence
maps, which are then converted into segmentation results
based on adaptive thresholding.

2.3. Encoder-Decoder Architecture

Many computer vision problems are addressed based on
the encoder-decoder architecture [20], which is illustrated
in Figure 1. The encoder extracts features from an input
image. Then, for example, the decoder can perform pixel-
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Figure 2. Overview of the proposed algorithm. We perform this process from the second to the last frames sequentially.

level classification or image-level classification using the
extracted features. Noh et al. [32] perform category-wise
semantic segmentation by constructing a decoder, which is
symmetrical to the VGG-16 net encoder [45]. Inspired by
this, Yang et al. [57] train a decoder to detect object con-
tours using a small number of layers. Liu and Han [29]
propose a saliency detection algorithm, which predicts a
multi-scale saliency map at each layer in a decoder. For
each encoded patch, Pinheiro et al. [38] generate an object
proposal by predicting a segmentation mask and an object-
ness score. Dai et al. [7] develop multi-task decoders, which
share the same encoded features, for instance-aware seman-
tic segmentation.

3. Proposed Algorithm
We propose a semi-supervised online video object seg-

mentation algorithm, which yields a segment track of a tar-
get object, annotated by a user at the first frame. The an-
notation can be performed by employing interactive image
segmentation techniques [16, 42, 56].

Figure 2 is an overview of the proposed algorithm. First,
given the segmentation label map for the previous frame
I(t−1), we propagate it to the current frame I(t) using opti-
cal flows. Then, the proposed CTN, which has the encoder-
decoder architecture, produces three probability maps: sep-
arative, definite foreground, and definite background maps.
These maps are tailored for the next MRF optimization step,
which computes the segmentation label map for the current
frame I(t) using unary and pairwise costs. We execute this
process from the second frame I(2) to the last frame I(T ) to
yield a segment track.

3.1. Propagation of Segmentation Labels

We exploit the segmentation label map for I(t−1) to
roughly locate the target object in the current frame I(t).
To this end, we first compute backward optical flow vectors
from I(t) to I(t−1). In implementation, we adopt one of the
two optical flow techniques [19, 26]; whereas [19] provides

(a) S(t−1) (b) Backward motion (c) H(t)

Figure 3. Inter-frame propagation of a segmentation label map.
The segmentation label map S(t−1) for frame t− 1 in (a) is prop-
agated by employing the backward optical flow vectors in (b), to
generate the propagation map H(t) in (c)

more accurate optical flow information, [26] requires much
lower computational complexity. For pixel p = [x, y]T , we
propagate the segmentation label from I(t−1) to I(t) by

H(t)(p) = S(t−1)(x+ u
(t)
b (p), y + v

(t)
b (p)) (1)

where [u
(t)
b (p), v

(t)
b (p)]T is the backward optical flow vec-

tor of p in I(t) to I(t−1), and H(t) is the propagation map
for I(t). S(t−1) is the segmentation label map for I(t−1),
whose element is 1 if the corresponding pixel belongs to the
foreground, and 0 otherwise. Figure 3 illustrates the inter-
frame propagation of segmentation labels. We see that the
target object is roughly estimated.

3.2. Inference via Convolutional Trident Network

The propagation map may be inaccurate due to object
deformation, motion blur, occlusion, and optical flow er-
rors. Hence, we infer segmentation information via the
CTN, which has the encoder-decoder architecture, to con-
sider high-level features of the target object. The inferred
information is effectively used to solve a binary labeling
problem as will be discussed in Section 3.3. Figure 4 shows
the architecture of the proposed network.

Network Architecture: The encoder extracts features from
a 224×224×3 input image patch. We choose the VGG-16
net [45] as the encoder, which consists of 13 convolution
layers, 3 fully connected layers, and 5 max-pooling layers.



Conv1_1

Conv1_2

Pooling

Conv2_1

Conv2_2

Pooling

Conv3_1

Conv3_2

Conv3_3

Pooling

Conv4_1

Conv4_2

Conv4_3

Pooling

Conv5_1

Conv5_2

Conv5_3

SD-Dec2

SD-Dec3

SD-Dec4

SD-Dec5

SD-Pred

DFD-Dec1

Unpooling

DFD-Dec2

Unpooling

DFD-Dec3

Unpooling

DFD-Dec4

Unpooling

DFD-Dec5

DFD-Pred

DBD-Dec1

Unpooling

DBD-Dec2

Unpooling

DBD-Dec3

Unpooling

DBD-Dec4

Unpooling

DBD-Dec5

DBD-Pred

Separative

probability patch

Definite 

foreground 

probability patch

Definite 

background 

probability patch

SD-Dec1

Unpooling

Unpooling

Unpooling

Unpooling

Image patch

Foreground 

propagation 

patch

Background 

propagation 

patch

Separative decoder

Definite foreground 

decoder

Definite background

decoder

Encoder

Concatenation

Figure 4. Architecture of the proposed convolutional trident net-
work (CTN) for semi-supervised online video object segmenta-
tion.

We only use the layers up to the 13 convolution layers, as
in [7,29,41]. While early layers encodes low-level features,
later ones characterize high-level attributes.

We draw segmentation inferences from the encoded fea-
tures using three decoders: separative decoder (SD), def-
inite foreground decoder (DFD), and definite background
decoder (DBD). These three decoders provide functional in-
formation, respectively, for the target object segmentation,
which is the binary labeling problem of the foreground and
the background. The decoders have unpooling layers [58]
and convolution layers. The unpooling layers guide the en-

coded features to be decoded in the original image patch
size. In this work, all unpooling layers enlarge their input
patches by a factor of 2 horizontally and vertically.

The goal of the SD is to separate a target object from the
background. First, we concatenate the encoded 14 × 14 ×
512 feature, ‘Conv5 3,’ and the 14×14 foreground propaga-
tion patch, which is resized from the propagation mapH(t).
Due to the resizing into a rather smaller size, the foreground
propagation patch loses details. This is, however, accept-
able since the inter-frame propagation is prone to errors and
can be misleading. We make the decoder robust to those
errors, by employing the smaller but more reliable patch.
Note that the resizing is a kind of low-pass filtering, which
reduces high-frequency noisy components. Then, we feed
the concatenated data into a convolution layer (‘SD-Dec1’)
and an unpooling layer. Pinheiro et al. [39] showed that the
intermediate outputs of the encoder, ‘Conv1 2,’ ‘Conv2 2,’
‘Conv3 3,’ and ‘Conv4 3,’ can improve segmentation qual-
ities in the decoder. Inspired by this, we concatenate the
output of the unpooling layer and ‘Conv4 3,’ and pass it
through a convolution layer (‘SD-Dec2’) and an unpool-
ing layer again. After repeating this sequential process of
concatenation, convolution, unpooling two more times, we
perform concatenation and convolution (‘SD-Dec5’) once
more and then use a prediction layer (‘SD-Pred’) to yield
the separative probability patch, whose elements have high
probabilities on foreground regions.

In segmentation, fixing labels in definite pixels improves
labeling accuracies. Definite pixels indicate locations that
should be labeled as the foreground or the background in-
dubitably. However, it is hard to decide where to fix the
labels. Hence, we develop the DFD and DBD to discover
definite pixels. The DFD identifies definite foreground pix-
els. We set the concatenated data, which is used in the SD,
as the input again. Then, we feed the concatenated input
data into convolution layers (‘DFD-Dec1∼5’) and unpool-
ing layers alternately. In the definite decoders, it is impor-
tant to determine only indubitable pixels, instead of high
quality object boundaries. Therefore, the definite decoders
do not use the intermediate outputs of the encoder. The last
convolution layer, ‘DFD-Pred,’ produces the definite fore-
ground probability patch that represents the probability of
each pixel to be a definite foreground one. On the contrary,
the DBD finds definite background pixels. We first invert
the foreground propagation patch to compute the 14 × 14
background propagation patch. Then, we concatenate the
encoded feature ‘Conv5 3’ and the background propagation
patch to form the input to the DBD, which has the same ar-
chitecture as the DFD. The DBD yields the definite back-
ground probability patch.

In each decoder, the final prediction layer consists of a
convolution layer and a sigmoid layer. The sigmoid layers
make the decoders to yield normalized outputs within [0, 1].



Table 1. Specification of the network decoders. We use the same
kernel settings and the normalization strategies for all three de-
coders, i.e. i ∈ {SD,DFD,DBD}.

i-Dec1 i-Dec2 i-Dec3 i-Dec4 i-Dec5 i-Pred
Kernel size 5× 5 5× 5 5× 5 5× 5 5× 5 3× 3
# of kernels 512 256 128 64 32 1

BN X X X X X
ReLU X X X X X

(a) Input image

(b) Object mask

(e) Degraded 

object mask
(c) Image patch

(d) Ground-truth 

mask for SD

(f) Foreground

propagation patch

(g) Ground-truth

mask for DFD
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Figure 5. Preprocessing of training data.

The batch normalization (BN) [21] is applied to all convolu-
tion layers in the decoders except for the prediction layers.
Also, the rectified linear unit (ReLU) activation function is
employed after the batch normalization. We use 5 × 5 ker-
nels in all convolution layers, except for the prediction lay-
ers whose kernel size is 3 × 3. Table 1 details the decoder
parameters. Note that we use the identical kernel sizes and
number of kernels for the three decoders.

Training Phase: Annotating objects in all frames in videos
is an arduous task. While there are several datasets for video
object segmentation [4, 12, 23, 28], each of them consists of
a small number of videos from 12 to 59. They are hence
insufficient for training the network in Figure 4. Therefore,
we instead use the PASCAL VOC 2012 dataset [10], which
is released for object classification, detection, and segmen-
tation. Hariharan et al. [17] annotate 26,844 object masks
on 11,355 images in the PASCAL dataset. Among the ob-
ject masks, we choose 25,093 object masks to compose a
training dataset, by discarding small object masks.

Figure 5 illustrates how to preprocess the training
dataset. By cropping a training image and its object mask,
we extract an image patch and its ground-truth mask for the
SD, respectively. We perform the cropping with margins,
proportional to the object size, as shown in Figure 5(b).
Note that the foreground propagation patch and the ground-
truth masks for the DFD and DBD are not available in the
PASCAL dataset. Hence, we generate them through sim-
ple image processing. First, we degrade the object mask to
yield the foreground propagation patch. We imitate propa-
gation errors, by filling in the masked region with random
pixel intensities within [0.5, 1] and then performing partial
suppression and noise addition with circular masks. In Fig-
ure 5(e), the suppression and noise addition are depicted by

blue and yellow circles, respectively. We adjust the radii of
the circular masks according to the object mask size, and
determine their locations randomly. Then, we resize the
degraded object mask to generate the 14 × 14 foreground
propagation patch in Figure 5(f). Next, we synthesize the
ground-truth masks for the DFD and DBD. We apply Gaus-
sian smoothing to the object mask and then perform thresh-
olding to extract inner regions of the object mask. The ex-
tracted regions are defined as the ground-truth mask for the
DFD, as shown in Figure 5(g). The ground-truth mask for
the DBD is produced in a similar manner, by employing the
inverse of the object mask, as shown in Figure 5(h).

We use the Caffe library [24] to train the proposed net-
work. We compose a minibatch with eight training data.
We fix the weight parameters of the encoder as in [7, 57].
We initialize the convolution layers in the decoders with
random values. We adopt the cross-entropy losses between
ground-truth masks and predicted probability patches. We
train the proposed network via the stochastic gradient de-
scent. We set the learning rate to 0.001 for the first 55
epochs and 0.0001 for the next 35 epochs.

Inference Phase: The proposed CTN takes an image patch,
a foreground propagation patch, and a background propaga-
tion patch as input. First, we extract the image patch and the
foreground propagation patch by cropping the current frame
I(t) and the propagation map H(t), respectively, around the
object pixels inH(t) with margins of 50 pixels. Then, we re-
size the image patch and the foreground propagation patch
to 224 × 224 × 3 and 14 × 14. We obtain the background
propagation patch by inverting the foreground one.

The proposed CTN outputs three probability patches of
size 224 × 224. We restore these patches to the sizes and
locations before the cropping, in order to yield the three
probability maps: separative probability map RS, definite
foreground probability map RF, and definite background
probability map RB. Note that these probability maps have
the same size as the input frame. We classify each pixel
p in the separative probability map as the foreground, if
RS(p) > θsep. Let L be the coordinate set for such fore-
ground pixels. In the two probability maps RF and RB, we
determine the pixels, whose probabilities are higher than
another threshold θdef , as the definite ones. Let F and B
denote the set of the definite foreground and background
pixels, respectively.

3.3. Markov Random Field Optimization

The pooling layers in Figure 4 reduce the number of
parameters and the amount of computations. However,
they also degrade details of a predicted target object. In
other words, the coordinate set L of foreground pixels may
not provide sufficiently detailed segmentation information.
Thus, we further improve the segmentation quality by solv-
ing a two-class (foreground or background) MRF optimiza-



tion problem. For notational simplicity, let us omit the
superscripts for frame indices. First, we define a graph
G = (N,E), whose nodes are pixels in the current frame.
N and E denote sets of nodes and edges, respectively. We
connect each pixel to its four neighbors by edges. By com-
bining unary and pairwise costs, the MRF energy function
E(S) of the segmentation label map S is defined as

E(S) =
∑
p∈N
D(p, S) + γ ×

∑
(p,q)∈E

Z(p,q, S) (2)

where γ controls the balance between the unary cost D and
the pairwise cost Z .

To compute the unary cost, we build the RGB color
GMMs of the foreground and the background, respectively.
In this work, we set the same number of Gaussian compo-
nents, K = 10, for both GMMs. We use the pixels in L to
construct the foreground GMMs, based on the expectation-
maximization algorithm, and those inLc for the background
GMMs. Let us define a Gaussian cost as

ψ(p, s) = min
k
{− log f(p ;Ms,k)} (3)

where f(· ;Ms,k) denotes the probability distribution func-
tion ofMs,k, which is the kth Gaussian component of the
foreground (s = 1) GMMs or the background (s = 0)
GMMs. A high Gaussian cost is returned when the Gaus-
sian distribution function has a low probability. Then, we
define the unary cost as

D(p, S) =

 maxg ψ(g, 0) if p ∈ F and S(p) = 0,
maxg ψ(g, 1) if p ∈ B and S(p) = 1,
ψ(p, S(p)) otherwise.

(4)
Note that D(p, S) yields a very high cost, if p is a fore-
ground definite pixel in F but is labeled as the background
class S(p) = 0. Consequently, the minimization of the
unary cost in the MRF energy function in (2) discourages
the foreground definite pixels in F from being labeled as
the background. Similarly, it discourages the background
definite pixels in B from being labeled as the foreground.

To encourage neighboring pixels to have the same label,
we compute the pairwise cost by

Z(p,q, S) =
{

exp(−d(p,q)) if S(p) 6= S(q),
0 otherwise, (5)

where d is the distance between the color and motion fea-
tures of pixels p and q. We extract the RGB color features,
and use the backward optical flow vectors as the motion fea-
tures. A high pairwise cost is incurred, if neighboring pixels
with similar features are assigned different labels.

For more reliable estimation of foreground and back-
ground colors at frame t, we employ the GMMs at the first
and (t − 1)th frames, as well as the GMMs at the current

(a) I(t−1) (b) I(t) (c) Reappearing parts

Figure 6. The proposed reappearing object detector discovers reap-
pearing parts of the legs, which are occluded in the previous frame
I(t−1). In (a), the foreground boundaries are in a cyan color.

frame t. We use the sum of the three corresponding unary
costs in the MRF optimization. We adopt the graph-cut al-
gorithm [3] to minimize the MRF energy function and ob-
tain an optimal segmentation label map S∗. Then, we refine
the GMMs at frame t, based on the label map S∗. We iterate
these two processes until the convergence.

3.4. Reappearing Object Detection

A target object may disappear and be occluded by other
objects. If the occluded parts reappear in the current frame,
the inter-frame propagation in Section 3.1 may be ineffec-
tive in the corresponding regions. Thus, we attempt to iden-
tify the reappearing parts. If there is no occlusion and the
optical flow estimation is accurate, the backward flow vec-
tor should be identical to the inverse of the corresponding
forward flow vector. Based on this backward-forward con-
sistency [46], we detect reappearing pixels. Specifically, we
first perform the backward matching from pixel p = [x, y]T

in frame t to pixel p̃ in frame t− 1 using the backward op-
tical flow vector at p. Next, we perform the forward match-
ing of p̃ to p̂ = [x̂, ŷ]T by adopting the forward optical flow
vector from frame t−1 to frame t. Ideally, the restored pixel
p̂ should be equal to the original pixel p = [x, y]T . Thus,
we compute the inconsistency of p by

φ(p) =
√
(x− x̂)2 + (y − ŷ)2/(µheight + µwidth) (6)

where µheight and µwidth are the height and width of the input
video sequence, respectively. If the inconsistency φ(p) is
higher than 1/400, we declare that p is inconsistent.

Next, we should detect reappearing foreground pixels
from the set of inconsistent pixels. To this end, we use the
foreground and background GMMs at the first and (t−1)th
frames. The reappearing parts are more likely to be repre-
sented by the foreground GMMs than by the background
ones. Therefore, we determine that an inconsistent pixel
belongs to the reappearing parts, if its foreground Gaussian
cost is lower than the background Gaussian cost. Note that
the Gaussian costs are defined in (3). Figure 6 shows an
example of the reappearing object detection result. We in-
clude the reappearing pixels into the set L of foreground
pixels before the MRF optimization.



Table 2. Performance comparison of the video object segmentation
algorithms on the DAVIS dataset [36]. The best and the second
best results are boldfaced and underlined, respectively.

Region similarity (RS) Contour accuracy (CA)
Algorithm Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓
A. Unsupervised algorithms
NLC [11] 0.641 0.731 0.086 0.593 0.658 0.086

CVOS [48] 0.514 0.581 0.127 0.490 0.578 0.138
TRC [14] 0.501 0.560 0.050 0.478 0.519 0.066
MSG [33] 0.543 0.636 0.028 0.525 0.613 0.057
KEY [27] 0.569 0.671 0.075 0.503 0.534 0.079
SAL [53] 0.426 0.386 0.084 0.383 0.264 0.072
FST [35] 0.575 0.652 0.044 0.536 0.579 0.065
ACO [23] 0.531 0.611 0.093 0.504 0.558 0.088

B. Semi-supervised algorithms
TSP [5] 0.358 0.388 0.385 0.346 0.329 0.388

SEA [40] 0.556 0.606 0.355 0.533 0.559 0.339
JMP [12] 0.607 0.693 0.372 0.586 0.656 0.373
FCP [37] 0.631 0.778 0.031 0.546 0.604 0.039
BVS [31] 0.665 0.764 0.260 0.656 0.774 0.236
Prop-Q 0.755 0.890 0.144 0.714 0.848 0.140
Prop-F 0.734 0.865 0.123 0.680 0.799 0.123

Table 3. Jaccard indices on the SegTrack dataset [49]. Higher val-
ues are better. The best and the second best results are boldfaced
and underlined, respectively.

Sequence [15] [52] [40] [54] [50] [31] Prop-Q
Girl 0.54 0.52 0.62 0.84 0.88 0.89 0.86

Birdfall 0.56 0.33 0.09 0.78 0.57 0.66 0.61
Parachute 0.86 0.70 0.93 0.94 0.95 0.94 0.94
Cheetah 0.46 0.33 0.18 0.63 0.34 0.10 0.40

Monkeydog 0.61 0.22 0.05 0.82 0.54 0.41 0.57
Average 0.60 0.42 0.37 0.80 0.66 0.60 0.68

4. Experimental Results

We evaluate the proposed algorithm on the state-of-the-
art DAVIS benchmark dataset [36], composed of 30 training
videos, 20 validation videos, and the corresponding ground-
truth label maps. We use all 50 videos for the evaluation,
since they are not used for training the proposed algorithm.
The spatial resolutions of these videos are 854 × 480, and
the number of frames in each video is from 25 to 104. The
videos are very challenging due to fast motion, occlusion,
and object deformation.

We use the performance measures introduced in [36].
To quantify the region similarity (RS), we use the Jaccard
index, which is the intersection-over-union ratio of a pre-
dicted segmentation label map and the ground-truth mask.
Also, the contour accuracy (CA) is reported in terms of an
F-measure, which is the combination of the precision and
recall rates of contour pixels. For these metrics, we report
the three statistics: mean, recall, and decay. The mean av-
erages the scores over all frames. The recall computes the
proportion of frames, the segmentation scores of which are
higher than 0.5. The decay first divides all frames into four

Table 4. Segmentation scores of the proposed algorithm in various
settings.

Region similarity (RS) Contour accuracy (CA)
Setting Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

A. Ablation studies
w/o DDs 0.684 0.756 0.185 0.677 0.790 0.159
w/o SD 0.663 0.797 0.248 0.665 0.792 0.216

B. Efficacy of MRF optimization
Before MRF 0.715 0.857 0.131 0.663 0.791 0.142
After MRF 0.755 0.890 0.144 0.714 0.848 0.140

clips, and then computes the score difference between the
last quarter and the first quarter.

Table 2 compares the proposed algorithm with 13 con-
ventional algorithms: unsupervised ones [11, 14, 23, 27, 33,
35,48,53] and semi-supervised ones [5,12,31,37,40]. Note
that [12] is a supervised algorithm, but it operates as a semi-
supervised one when user annotations are given at the first
frame only. The scores of the conventional algorithms are
from [31, 36] except for ACO [23]. For ACO, we use the
source codes, which are available online. We report the
scores of two versions of the proposed algorithm: ‘Prop-
Q’ uses the state-of-the-art optical flow technique [19],
whereas ‘Prop-F’ adopts a much faster optical flow tech-
nique [26]. Both Prop-Q and Prop-F surpass all conven-
tional algorithms. Especially, in terms of the RS recall,
Prop-Q outperforms the second best algorithm FCP [37] by
a considerable margin, about 14.4%. Also, Prop-Q is supe-
rior to BVS [31] in terms of the RS mean by about 13.5%.
FCP yields better decay scores than the proposed algorithm.
This is because, while the proposed algorithm performs the
segmentation sequentially from the first to last frames, FCP
discovers a target object by considering object proposals in
all frames simultaneously.

Figure 7 shows that the proposed algorithm yields spa-
tially accurate and temporally coherent segment tracks,
even when the target objects undergo fast motion (“Dog-
agility”), occlusion (“Dog-agility” and “Motorbike”), and
deformation (“Dance-twirl” and “Dog-agility”).

For the sake of complete evaluation, we test the semi-
supervised algorithms on SegTrack dataset [49], which is
widely used to assess video object segmentation techniques.
Table 3 lists the Jaccard indices of the segmentation results.
In average, the proposed algorithm outperforms the conven-
tional algorithms except for [54]. However, [54] uses man-
ually tuned parameters for each sequence, while the others
use fixed parameters.
Ablation Study: We perform two ablation studies. Prop-
Q is used in these studies. First, we remove the DFD and
DBD, and thus F = B = ∅ in (4). Second, we use the
propagation map H(t) to select initial foreground pixels in
the MRF optimization, instead of employing the set L of
foreground pixels that are detected by the SD. Let us refer
to the first and the second settings as ‘w/o DDs’ and ‘w/o
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Figure 7. Segmentation results of the proposed algorithm. (a) shows the user-annotated target objects at the first frame. (b)∼(f) are the
segmentation results at subsequent frames. From top to bottom, the frames are from “Dance-twirl,” “Dog-agility,” and “Motorbike” in the
DAVIS dataset [36].

Table 5. Comparison of computational times. The fastest and the
second fast algorithms are boldfaced and underlined, respectively.

NLC [11] SEA [40] JMP [12] BVS [31] Prop-Q Prop-F
Time (SPF) 45.62 13.69 27.37 0.84 29.95 1.33

SD,’ respectively. Table 4 lists the RS and CA scores for
each ablation setting. In both settings, the performance is
degraded severely, which indicates that all three decoders
are necessary for accurate video object segmentation.

Efficacy of MRF Optimization: Table 4 also measures the
qualities of segmentation maps of the proposed algorithm
before and after the MRF optimization. It is observable that
the MRF optimization further refines segmentation maps.
Notice that the reappearing object detection technique is
adopted after the CTN to augment the set of initial fore-
ground pixels in the MRF optimization. Since many objects
in the DAVIS dataset [36] suffer from occlusion and reap-
pearance, the MRF optimization improves the performance
considerably.

Running Time Analysis: We measure the running times of
the segmentation algorithms in seconds per frame (SPF).
We test the proposed algorithm on the “Blackswan” se-
quence in the DAVIS dataset [36] using a PC with a Titan X
GPU and a 3.0 GHz CPU. Table 5 shows that the faster ver-
sion of the proposed algorithm, Prop-F, is faster than most
algorithms, while providing superior performance.

Parameter Selection: For balancing the unary and pair-
wise costs, we set γ to 25 in (2). The proposed algorithm
has two controllable parameters θsep and θdef . θsep thresh-
olds the separative map of the SD, while θdef binarizes the
two definite maps of the DFD and DBD. Figure 8 shows
the RS and CA scores for various combinations of θsep and
θdef . It is observable that the proposed algorithm provides
the best results at θsep = 0.3 and θdef = 0.9. Thus, these
parameters are fixedly used in all experiments.
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Figure 8. Segmentation qualities according to the two parameters,
θsep and θdef .

5. Conclusions

We proposed a semi-supervised online video object seg-
mentation algorithm. First, a segmentation label map is
propagated from the previous frame to the current frame.
Then, the CTN yields three probability maps, tailored for
the binary labeling problem. To delineate a target object,
we performed the MRF optimization by adopting the tai-
lored probability maps. Experimental results demonstrated
that the proposed algorithm significantly outperforms the
state-of-the-art conventional algorithms [12, 31, 37, 40] on
the DAVIS benchmark dataset [36].
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