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Abstract

We propose the deep progressive image compression
using trit-planes (DPICT) algorithm, which is the first
learning-based codec supporting fine granular scalability
(FGS). First, we transform an image into a latent tensor us-
ing an analysis network. Then, we represent the latent ten-
sor in ternary digits (trits) and encode it into a compressed
bitstream trit-plane by trit-plane in the decreasing order of
significance. Moreover, within each trit-plane, we sort the
trits according to their rate-distortion priorities and trans-
mit more important information first. Since the compression
network is less optimized for the cases of using fewer trit-
planes, we develop a postprocessing network for refining re-
constructed images at low rates. Experimental results show
that DPICT outperforms conventional progressive codecs
significantly, while enabling FGS transmission. Codes are
available at https://github.com/jaehanlee-mcl/DPICT.

1. Introduction
Image compression is a fundamental problem in image

processing and analysis. Classical image codecs, such as
JPEG [44], JPEG2000 [37], WebP [18], and BPG [8], have
been developed to achieve the goal of efficient data storage
and transmission. They contain several modules to process
hand-crafted features. For example, for transform coding,
JPEG uses discrete cosine transform, and JPEG2000 adopts
wavelet transform.

Recently, with the availability of substantial training data
and computing resources, deep learning has been adopted
for image compression, as well as other image and vision
problems. Some learning-based codecs are based on con-
volutional neural networks (CNNs) [5,6,26,30], while oth-
ers on recurrent neural networks (RNNs) [19, 24, 40, 41].
In terms of the rate-distortion (RD) performance, recent
learning-based codecs [11, 13, 47] are competitive with or
even superior to the classical codecs.

Progressive compression, or scalable coding [32], is a
crucial issue. A progressive codec encodes an image into
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Figure 1. Illustration of progressive reconstruction of the proposed
DPICT algorithm.

a single bitstream that can decoded at various bit-rates, as
illustrated in Figure 1. There are various terminals from
small wearable devices to big TVs, requiring different im-
age qualities at different bit-rates. It is inefficient to encode
multiple non-scalable bitstreams for these diverse devices.
In contrast, a scalable bitstream can be efficiently truncated
at multiple points to reconstruct the scene at different qual-
ities. Moreover, when a network has a limited bandwidth,
the receiver of a scalable bitstream can first check a pre-
view image by receiving a small portion of the bitstream,
and then reconstruct a higher quality image by decoding the
remaining bits.

There are several learning-based progressive codecs [10,
19,24,40,41], which, however, support coarse granular scal-
ability only: a bitstream can be decoded at a limited num-
ber of rates. To the best of our knowledge, the proposed
algorithm is the first learning-based codec with fine gran-
ular scalability (FGS) [28, 36]: a single bitstream can be
truncated at any points to reconstruct the scene faithfully.
Furthermore, despite this additional functionality, the pro-
posed algorithm provides better RD performance than the
conventional learning-based progressive codecs.

In this paper, we propose the deep progressive image
codec using trit-planes (DPICT) with FGS. First, we trans-
form an image into a latent tensor, each element of which is



represented by ternary digits (trits). Then, we encode the
latent tensor trit-plane by trit-plane in the decreasing or-
der of significance. Moreover, even in the same trit-plane,
we sort the trits according to the RD priorities to transmit
more important information first. At the decoder, when
fewer trit-planes are used, the reconstructed image is de-
graded by quantization errors and contain noisy artifacts. To
reduce such artifacts, we also develop postprocessing net-
works. Experimental results demonstrate that DPICT out-
performs the conventional progressive codecs significantly,
while supporting FGS.

2. Related Work

Learning-based compression: A typical learning-based
image compression method [3,5,39] constructs a neural net-
work, by integrating a quantizer into an autoencoder [43],
which is trained end-to-end to minimize a loss function,
including rate and distortion terms. Given an image, the
encoder (or analysis network) generates a latent representa-
tion, which is then quantized. The decoder (or synthesis net-
work) dequantizes the representation and reconstructs the
image in a lossy manner. The quantizer is, however, not dif-
ferentiable. For the backpropagation in the training phase,
it is approximated by the binarization process [40], additive
uniform noise [5], or stochastic rounding [39].

Rippel and Bourdev [35], Tschannen et al. [42], and
Agustsson et al. [4] adopted generative adversarial net-
works [17] for image compression. Nakanishi et al. [31] de-
veloped an image codec based on a multi-scale autoencoder.
Ballé et al. [6] proposed an additional autoencoder for a
hyperprior. They assumed that latent elements have Gaus-
sian distributions with zero mean, and used the hyperprior
autoencoder to encode the standard deviations. Mentzer et
al. [29], Minnen et al. [30], Lee et al. [26], and Li et al. [27]
adopted context models. Also, more sophisticated hyperpri-
ors have been studied. Cheng et al. [11] assumed Gaussian
mixture models for latent elements, and Cui et al. [13] used
asymmetric Gaussian distributions.

Variable-rate compression: While traditional codecs,
such as JPEG [44], support variable bit-rates, most learning-
based codecs [5,6,11,26,27,30,39] can generate bitstreams
at fixed rates only. For multiple rates, they should train as
many models, which incur inefficiency in testing, as well as
in training.

Hence, several learning-based codecs have been devel-
oped to achieve variable-rate compression using a single
network. Theis et al. [39] proposed a variable-rate train-
ing scheme for a single autoencoder using a scale parameter
for quantization. Choi et al. [12] also employed the scaled
quantization, while training rate-specific parameters for a
few selected rates. Similarly, Yang et al. [48] proposed the
modulated autoencoders containing separate modules for

selected rates. Cai et al. [9] generated multi-scale represen-
tations and performed content-adaptive rate allocation. Cui
et al. [13] proposed gain units to guide the network to allo-
cate more bits to specific channels and also to control rates.
Yang et al. [47] used the slimmable neural networks [49,50]
to perform low-rate compression using only a fraction of
the parameters and the highest-rate compression using all
parameters. These codecs [9, 12, 13, 39, 47, 48] can adapt
to different rates with a single trained model, but their bit-
streams are not scalable, i.e. a lower-rate bitstream is not
embedded in a higher-rate one.

Progressive compression: Progressive codecs to encode
scalable bitstreams have also been studied. For exam-
ple, JPEG [44] and JPEG2000 [37] are traditional progres-
sive codecs. There are several learning-based progressive
codecs, most of which are based on RNNs [19, 24, 40, 41].
Toderici et al. [40] proposed the first RNN-based pro-
gressive codec. Their network, utilizing the long short-
term memory (LSTM) [20], transmits bits progressively:
At stage t + 1, the encoder transmits the residual error
at stage t, and the decoder reconstructs it and adds it to
the reconstructed image at stage t. If this is repeated T
times, the single bitstream can support T different rates pro-
gressively. Gregor et al. [19] also introduced a recurrent
image codec, which improves conceptual quality using a
generative model. However, these codecs [19, 40] are for
low-resolution patches. Torderici et al. [41] developed a
codec for higher-resolution images by expanding the previ-
ous work in [40]. Johnston et al. [24] proposed an effec-
tive initializer for hidden states of their RNN and a spa-
tially adaptive rate controller. However, all these RNN-
based algorithms support only coarse granular scalability:
a bitstream can be reconstructed at T different rates only,
where T is the number of recurrent stages. Moreover, their
compression performances are inferior even to those of the
traditional codecs [8]. On the other hand, Cai et al. [10]
proposed a network of a single encoder and two decoders.
The encoder decomposes an image into two representations.
Then, the preview decoder uses only one representation, and
the full-quality decoder uses both representations. Hence,
their network supports two rates only.

The proposed DPICT algorithm supports FGS in contrast
to these learning-based progressive codecs [10, 19, 24, 40,
41]. Furthermore, DPICT provides significantly better RD
performance than the conventional progressive codecs.

3. Proposed Algorithm
3.1. Compression network

We adopt the compression framework in Figure 2, which
consists of an encoder ga, a decoder gs, a hyper encoder ha,
and a hyper decoder hs, as done in [6, 11–13, 26, 30, 47].
An image X is transformed to a latent representation Y and
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Figure 2. Image compression framework.

a hyper latent representation Z sequentially by ga and ha.
Using the factorized prior model [6], denoted by qf (·) in
Figure 2, Z is digitized to Ẑ. From Ẑ, hs yields M and
Σ, which contain the means and standard deviations of the
elements in Y, respectively. These elements are assumed
to be independent Gaussian random variables. Then, the
mean-removed (or centered) Yc = Y −M is quantized to

Ŷc = q(Yc) (1)

where rounding is used for the quantizer q(·). Finally, the
decoder gs adds M back to Ŷc to yield

Ŷ = Ŷc +M (2)

and uses it to reconstruct X̂.
In addition to Ẑ, Ŷc in (1) is encoded into a bitstream.

Let ŷc, yc, and σ be corresponding elements in Ŷc, Yc, and
Σ. Then, the number of bits for encoding ŷc is given by

N(ŷc) = − log2 P
(
ŷc − 1

2 ≤ yc < ŷc +
1
2

)
(3)

where yc ∼ N (0, σ2). Unlike conventional algorithms, we
compress Ŷc progressively using trit-planes in Section 3.2.

In the training phase, since the quantizer is not differen-
tiable, it is approximated by an additive noise function u(·),

Ỹ = u(Y) = Y + U
(
− 1

2 ,
1
2

)
(4)

where U(− 1
2 ,

1
2 ) is a uniform noise tensor in range (− 1

2 ,
1
2 ).

The noise function u(·) is assumed to generate white noise
and not considered during the back-propagation of gradients
[5]. Similarly, Z̃ is obtained from Z [30], and then M̃ and
Σ̃ are estimated. Finally, X̃ is reconstructed from Ỹ.

The loss function ℓ consists of a distortion term ℓD and
a rate term ℓR,

ℓ = ℓD(X, X̃) + λ · ℓR(Ỹ, Z̃; M̃, Σ̃) (5)

where ℓD is defined as the mean squared error between X
and X̃, and ℓR is the rate for encoding the elements in Ỹ
and Z̃. Notice that the rate for Ỹ is given by the sum of the
numbers of bits N(ỹ), similar to (3), but based on M̃ and
Σ̃. In (5), λ is a Lagrangian multiplier to control the RD
trade-off.
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Figure 3. Illustration of the trit-plane coding of K elements.

3.2. Trit-plane coding

We represent Ŷc in (1) in a ternary number system and
encode it trit-plane by trit-plane to achieve FGS. There are
K = H ×W ×C elements in Ŷc, where H , W , and C are
the height, the width, and the number of channels, respec-
tively. Conventional algorithms transmit these K elements
in a raster scan order, so they cannot decompress a partial
bitstream meaningfully; the reconstructed image is severely
degraded if some of the elements are missing. In contrast,
we express each element using L trits and compress the
L trit-planes in the decreasing order of significance from
the most significant trit (MST) to the least significant trit
(LST), as shown in Figure 3. In this way, front parts of the
bitstream contain more important information, enabling the
decoder to perform progressive reconstruction faithfully.

Figure 4 illustrates how to progressively compress an el-
ement ŷc = q(yc) in Ŷc, where yc ∼ N (0, σ2). In this
example, L = 3, so it is assumed that yc is rounded to
one of the integers between −13 and 13 = 3L−1

2 . First,
the number line is partitioned into three intervals, and the
MST indicates which interval contains yc. Specifically,
0(3), 1(3), and 2(3) correspond to the left, middle, and right
intervals, respectively. In Figure 4, yc belongs to the mid-
dle interval I1 = [−4.5, 4.5), so the trit 1(3) is encoded
into the bitstream. Second, I1 = [−4.5, 4.5) is partitioned
into three sub-intervals, and the next trit 2(3) informs that
yc ∈ I2 = [1.5, 4.5). Finally, I2 is partitioned again, and
the third trit (LST) 0(3) means that yc ∈ I3 = [1.5, 2.5).
Hence, with all three trits, the decoder knows that ŷc = 2.

In general, let In = [ln, rn) denote the interval con-
taining yc when the first n trits are encoded. Also, let
tn ∈ {0(3), 1(3), 2(3)} denote the nth trit. In is partitioned
into three sub-intervals of the same length (except for the
leftmost and rightmost intervals):

I0
n = [l0n, r

0
n) = [ln,

2ln+rn
3 ), (6)

I1
n = [l1n, r

1
n) = [2ln+rn

3 , ln+2rn
3 ), (7)

I2
n = [l2n, r

2
n) = [ ln+2rn

3 , rn). (8)

Then, the next (n+1)th trit tn+1 reveals which subinterval
contains yc. It becomes In+1.
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The conditional probability of tn given {tn−1, · · · , t1}
is given by

P (tn|tn−1, · · · , t1) = P (yc ∈ In|yc ∈ In−1) (9)

= Φ(rn/σ)−Φ(ln/σ)
Φ(rn−1/σ)−Φ(ln−1/σ)

(10)

where Φ(·) is the CDF of the standard normal distribution.
The number of bits for encoding tn is then given by

N(tn) = − log2 P (tn|tn−1, · · · , t1). (11)

Also, by the chain rule,

P (ŷc) = P (tL, · · · , t1) =
∏L

n=1 P (tn|tn−1, · · · , t1).
(12)

From (3), (11), and (12), we have

N(ŷc) =
∑L

n=1 N(tn). (13)

In other words, the trit-plane coding of ŷc requires the same
number of bits as the straightforward coding does. How-
ever, it allows progressive reconstruction of yc. Suppose
that the first n trits are received. Then, the decoder recon-
structs yc to

ŷnc = E[yc|yc ∈ In], (14)

which is the minimum mean squared error (MMSE) esti-
mate [16]. In other words, ŷnc in (14) yields the minimum
mean squared distortion

Dn = E[(yc − ŷnc )
2|yc ∈ In]. (15)

Bit-plane coding: Bit-planes may be used instead of trit-
planes. However, note that the most frequent ŷc is 0 because
yc ∼ N (0, σ2). When ŷc is 0, ŷnc in (14) is 0 regardless of
n, which enables faithful reconstruction even at a low bit-
rate. This is impossible in the bit-plane coding, i.e. ŷnc ̸= 0
for n ≤ L − 1 when ŷc = ŷLc = 0. Hence, we use trit-
planes. It is shown in Section 4 that the trit-plane coding
outperforms the bit-plane coding.
Coding of Ẑ: We do not compress Ẑ progressively. Since
the entropy coding of ŷ depends on µ and σ estimated from
Ẑ, it is impossible to decompress ŷ from a partially recon-
structed Ẑ. Also, Ẑ occupies only about 1% of the overall
bitrate. Hence, we transmit all bits for Ẑ before the progres-
sive transmission of Ŷc.
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3.3. RD-prioritized transmission

To transmit more important information first, we com-
press the L trit-planes from MST to LST. Moreover, within
each trit-plane, we transmit the K trits after sorting them
according to their RD priorities. The transmission of a trit
increases the rate (∆R > 0), but it decreases the distortion
(∆D < 0). The goal is to minimize ∆R and maximize
−∆D simultaneously. To achieve this goal, sophisticated
RD methods [33] can be applied. However, for simplicity,
we use the ratio −∆D

∆R for RD-prioritized transmission.
In Figure 5, from the upper-left dot, there are several ar-

rows corresponding to possible coding elements. We at-
tempt to follow the optimal RD curve by selecting the el-
ement with the maximum ratio −∆D

∆R . After transmitting
it, we repeat the process with the remaining elements. It is
computationally prohibitive to measure ∆D exactly. Thus,
we assume that the image distortion is proportional to the
error in a latent element. The greedy selection and the dis-
tortion assumption cannot guarantee optimal transmission,
but they yield good RD performance in practice, as will be
shown in Section 4.

Suppose that the nth trit-plane is to be compressed.
Thus, for an element ŷc, its first n − 1 trits are already
transmitted and its nth trit tn is to be compressed. Both
the encoder and the decoder can compute the probabilities
qk = P (tn = k|tn−1, · · · , t1), k = 0, 1, 2 via (9). Then,
the expected number of bits for encoding tn is given by the
entropy H({q0, q1, q2}),

∆R = H({q0, q1, q2}) = −
∑2

k=0 qk log2 qk. (16)

We use the ANS coder [15] for the entropy coding. Also, for
the three cases of tn = 0, 1, 2, we compute the distortions
via (15), respectively, which are denoted by D0

n, D
1
n, D

2
n.
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Then, the expected distortion change is given by

∆D = E[Dn]−Dn−1 =
∑2

k=0 qkD
k
n −Dn−1 (17)

where Dk
n is

Dk
n = E[(yc − ȳk)

2|yc ∈ Ik
n−1] (18)

with ȳk = E[yc|yc ∈ Ik
n−1]. Figure 6 illustrates how to

compute ȳk, Dk
n, and ∆D with a toy example.

Finally, we compute the RD priority of the nth trit, which
is defined as

−∆D

∆R
=

∑2
k=0 qkD

k
n −Dn−1∑2

k=0 qk log2 qk
. (19)

Then, we transmit the K trits in each trit-plane after sorting
them in the decreasing order of their RD priorities. In this
way, more important information is transmitted first, even
in the same trit-plane.

3.4. Postprocessing network

To train the proposed algorithm, in (4), we use a uniform
noise tensor in range (− 1

2 ,
1
2 ) to consider the case of using

all L trit-planes. Thus, the network is less optimized for the
cases of using fewer trit-planes. Figure 7 shows histograms
of ŷLc , ŷL−1

c , and ŷL−2
c . With fewer trit-planes, the gaps

between reconstruction levels get wider, resulting in bigger
quantization errors, which generate more artifacts in recon-
structed images. Let X̂n denote a reconstructed image from
a partial representation Ŷn

c consisting of ŷnc ’s. As shown in
Figure 8(b), X̂L−3 contains noisy artifacts.

We develop a postprocessing network gp to reduce such
artifacts. In other words, the goal of gp is to convert a recon-
structed image X̂n to a more faithful one X̂n +∆X̂n with
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Figure 9. Training schema of a postprocessing network gp.

less artifacts. Figure 9 shows the training schema of gp. In
the upper pass, we first obtain Ŷn

c by (14) and then recon-
struct X̂n = gs(Ŷ

n
c + M). Similarly, in the lower pass,

we obtain the reconstructed image X̂L from ŶL
c + M us-

ing all trit-planes. We regard X̂L as a clean image without
artifacts. Then, we train the postprocessing network to take
X̂n and yield the residual ∆X̂n, by employing the postpro-
cessing loss

ℓp = ∥∆X̂n − (X̂L − X̂n)∥2 (20)

In the testing phase, using gp, we refine a reconstructed im-
age X̂n into X̂n + gp(X̂

n). Figure 8(c) shows how gp im-
proves the reconstructed images X̂L−3. We see that, com-
pared to X̂L−3, the refined images X̂L−3+∆X̂L−3 contain
less artifacts and render the scenes more faithfully.

4. Experimental Results
4.1. Implementation

We develop a compression network similar to the Cheng
et al.’s network [11], but we make some modifications to en-
code scalable bitstreams. First, we remove the autoregres-
sive mask convolution, which predicts entropy parameters
from a latent tensor. The autoregressive prediction assumes
that the decoder can reconstruct the same latent tensor Ŷ
in the raster scan order as the encoder does. However, in
DPICT, the information in Ŷ is progressively transmitted.
Therefore, before the decoder reconstructs all trit-planes,
the assumption fails and the entropy decoding breaks down.
Second, we assume that each latent element y has a Gaus-
sian distribution, instead of a Gaussian mixture model. This
is to simplify the MMSE estimation and RD optimization in
(9) and (14)∼(19).

A postprocessing network gp also has the encoder-dec-
oder architecture. It is implemented with residual blocks,
attention modules, and subpixel convolution layers [11].
However, gp has 35 layers only, while the encoder ga and
the decoder gs in the compression network in Figure 2 have
68 layers. We train two postprocessing networks, targeting
at different bit-rates. Note that X̂n denotes a reconstructed
image using the first n trit-planes. When n is not an inte-
ger, X̂n means that, in addition to the first ⌊n⌋ trit-planes,
100× (n− ⌊n⌋) % of the trits in the (⌊n⌋+ 1)th trit-plane
are used for the reconstruction. The first gp targets at X̂n for
n ∈ [0, L−2.9], and the second gp for n ∈ (L−2.9, L−1.8].
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We decided these ranges empirically and also observed that
the postprocessing is not effective for X̂n, n ∈ (L−1.8, L],
which is already of high quality.

For training, we use the Vimeo90k dataset [46]. Since
it contains frames with overlapping contents, we sample
80,000 frames and randomly crop 256 × 256 patches from
each sampled frame. We use the Adam optimizer [25] with
a batch size of 16, a learning rate of 2 ·10−5, and λ = 5. We
perform the scheduled learning according to cosine anneal-
ing cycles [21]. We train the compression network for 200
epochs and then the postprocessing networks for 20 epochs.

For evaluation, we use the Kodak lossless image dataset
[1] and the CLIC professional validation dataset [2]. The
Kodak dataset consists of 24 images of resolution 512×768
or 768 × 512, while the CLIC dataset contains 41 images
of higher quality up to 2K resolution. For each image, we
determine the number L of trit-planes to cover the values of
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Figure 12. RD performance comparison on the CLIC dataset:
DPICT is compared with JPEG [44], JPEG2000 [37], WebP [18],
BPG [8], Lee et al. [26], and Cheng et al. [11]. Note that only
JPEG, JPEG2000, and DPICT are progressive codecs, and their
RD curves are solid lines.

all elements, after truncating outliers, in Ŷc. We measure
the rate by bits per pixel (bpp), and the distortion by peak-
to-signal ratio (PSNR) and multi-scale structural similarity
(MS-SSIM) [45]. For MS-SSIM, we convert it to dB scale
by MS-SSIM (dB) = −10 · log10(1− MS-SSIM).

We conduct all experiments using Pytorch [34] and
CompressAI [7]. Network architecture and implementation
details are available in the supplemental document.

4.2. Performance comparison

First, we compare the proposed DPICT with conven-
tional progressive codecs: JPEG [44] and JPEG2000 [37]
and learning-based progressive codecs [10,14,22,24,38,41].
Figure 10 plots the RD curves on the Kodak dataset. At
every rate, DPICT provides the highest PSNR and the
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Figure 13. Qualitative comparison of reconstructed images at similar rates: WebP [18], BPG [8], JPEG [44], JPEG2000 [37], and DPICT.
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Figure 14. Qualitative comparison of progressively reconstructed images at various rates: JPEG2000 [37] and the proposed DPICT. At the
top, the numbers of trit-planes used for the DPICT reconstruction are specified.

highest MS-SSIM, outperforming the second best codecs
JPEG2000 and Jhonston et al. [24] considerably. For exam-
ple, at 0.75bpp, DPICT yields about 1.7dB higher PSNR
than JPEG2000, and about 1.1dB higher MS-SSIM than
Jonston et al.

Moreover, it is worth pointing out that DPICT is the
only learning-based codec with FGS. The same bitstream
of DPICT for an image is reconstructed at 164 different
rates, as indicated by red dots in Figure 10, which can be
increased further if needed. On the other hand, Su et al.
[38] support coarse granular scalability for four rates only,
and their rate range is much narrower than that of DPICT.
Cai et al. [10] support two rates only, one for preview im-
ages and the other for full-quality images. The RNN-based
codecs [24, 41] support 16 rates, but their PSNR perfor-
mances are poorer than those of JPEG2000.

Next, Figure 11 compares DPICT with non-progressive
codecs [6, 8, 11, 13, 18, 30, 47]. Despite the additional func-
tionality of FGS, DPICT outperforms the two traditional
codecs, WebP and BPG, and is competitive with the state-
of-the-art learning-based codecs.

Figure 12 compares RD curves on the CLIC dataset. We
see that DPICT outperforms progressive codecs [37,44] sig-
nificantly and competes with Cheng et al. [11], which is a
state-of-the-art non-progressive codec.

Figure 13 compares reconstructed images at similar
rates. In areas with complicated texture and sharp edges,
such as dirt floor or patterned window, the traditional codecs
yield blurring artifacts, but DPICT restores high quality im-
ages without noticeable artifacts.

Figure 14 shows reconstructed images at different rates
from a single bitstream. At the top of the figure, we spec-
ify how many trit-planes are decoded. At all rates, DPICT
provides better qualities than the progressive JPEG2000.

4.3. Ablation study

We analyze the compression performance of DPICT in
Figure 15. Here, each curve represents the result of replac-
ing or removing certain components of DPICT.

First, we compare the proposed DPICT with four base-
lines excluding the trit-plane coding. In ‘without sorting,’
latent elements are transmitted channel by channel in the
raster scan order without priority. This approach under-
performs badly. In ‘channel-wise sorting,’ the C channels
of the latent tensor are sorted and transmitted according to
the RD priorities. Instead of channels, ‘latent-wise sorting’
sorts the K = H × W × C latent elements. These alter-
natives can support progressive transmission, but are much
inferior to DPICT. ‘Bit-plane’ is the result of replacing the
trit-plane coding with the bit-plane coding. As mentioned in
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Figure 15. Ablation studies of DPICT on the Kodak dataset.

Section 3.2, ŷnc cannot be reconstructed to 0 in the bit-plane
coding unless n = L. This causes significant performance
degradation at low rates, i.e. when a bitstream is partially
decoded. These results indicate that the trit-plane coding is
an essential component of DPICT.

Second, we change the training schema. ‘Multi-rate’ is
the result of changing the loss function so that the compres-
sion network is trained for multiple rates. Specifically, we
replace the loss function in (5) with

ℓ =
∑L

n=L−3

(
ℓD(X, X̃n) + λnℓR(Ỹ

n, Z̃; M̃, Σ̃)
)
(21)

to consider partially reconstructed X̃L−3, X̃L−2, X̃L−1, as
well as fully reconstructed X̃L = X̃. Note that loss func-
tions for different rates are also combined in [13,47]. How-
ever, ‘multi-rate’ severely narrows the range of supported
rates and is effective only at low rates.

Third, we replace the prioritized transmission. ‘Without
priority’ is the result of not using the RD priority in (19).
In this case, trits in each trit-plane are transmitted in the
raster scan order. We see that the prioritized transmission
is essential for reconstructing high quality X̂n when n is
not an integer. ‘Reverse priority’ transmits the trits in a trit-
plane in the increasing order of the RD priorities. It yields
even poorer performance than ‘without priority.’

Last, ‘without gp’ is the result of not using the postpro-
cessing networks. Note that the postprocessing networks
improve the quality of a reconstructed image when the rate
is lower than about 0.4bpp. Figure 16 shows the impacts
of the postprocessing networks gp. For easier comparison,
improvement maps are also provided. When L− 2 or fewer
trit-planes are used, the postprocessing networks consis-
tently improve reconstructed images both qualitatively and
quantitatively. On the other hand, for reconstructed images
using more than L− 2 trit-planes, they do not provide clear
improvements. Thus, we use the postprocessing networks
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Figure 16. Comparison of reconstructed images before and after
the postprocessing. Improvement maps are provided, where red
and blue means improvement and deterioration, respectively.

when fewer than L− 1.8 trit-planes are decoded.
We provide more experimental results and analysis in the

supplemental document. Also, we describe how to imple-
ment the proposed DPICT algorithm efficiently in [23].

5. Conclusions
In this paper, we proposed the DPICT algorithm support-

ing FGS. In DPICT, an image is transformed into a latent
tensor using an analysis network. The latent tensor is then
represented in a ternary number system and is encoded trit-
plane by trit-plane in the decreasing order of significance.
Furthermore, in each trit-plane, the trits are transmitted in
the decreasing order of the RD priorities. We also devel-
oped the post-processing networks to reduce artifacts due
to quantization errors when fewer trit-planes are used. Ex-
periments demonstrated that the proposed DPICT provides
state-of-the-art performance by outperforming other pro-
gressive codecs signficantly.
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[6] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. In ICLR, 2018. 1, 2, 3, 6, 7

[7] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay
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