
Received March 31, 2018, accepted May 7, 2018, date of publication May 18, 2018, date of current version June 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2838442

Multiscale Feature Extractors for Stereo
Matching Cost Computation
KYUNG-RAE KIM, YEONG JUN KOH, (Student Member, IEEE),
AND CHANG-SU KIM , (Senior Member, IEEE)
School of Electrical Engineering, Korea University, Seoul 136-701, South Korea

Corresponding author: Chang-Su Kim (changsukim@korea.ac.kr)

This work was supported in part by the Cross-Ministry Giga KOREA Project Grant funded by the Korean Government (MSIT)
(development of 4D reconstruction and dynamic deformable action model based hyper-realistic service technology) under Grant
GK18P0200 and in part by the National Research Foundation of Korea Grant funded by the Korean Government (MSIP) under
Grant NRF-2015R1A2A1A10055037 and Grant NRF-2018R1A2B3003896.

ABSTRACT We propose four efficient feature extractors based on convolutional neural networks for
stereo matching cost computation. Two of them generate multiscale features with diverse receptive field
sizes. These multiscale features are used to compute the corresponding multiscale matching costs. We then
determine an optimal cost by combining the multiscale costs using edge information. On the other hand,
the other two feature extractors produce uni-scale features by combining multiscale features directly through
fully connected layers. Finally, after obtaining matching costs using one of the four extractors, we determine
optimal disparities based on the cross-based cost aggregation and the semiglobal matching. Extensive
experiments on the Middlebury stereo data sets demonstrate the effectiveness and efficiency of the proposed
algorithm. Specifically, the proposed algorithm provides competitive matching performance with the state
of the arts, while demanding lower computational complexity.

INDEX TERMS Stereo matching, matching cost computation, multiscale feature extraction, convolutional
neural networks.

I. INTRODUCTION
Dense stereo matching is one of the most extensively
studied topics in low-level computer vision. However, stereo
matching is still an important topic since it poses chal-
lenging issues, which are not solved perfectly yet, such as
occlusion, aperture problem, large displacement, disparity
discontinuity, and difficulties on object boundaries, repeti-
tive texture regions, and non-textured regions. In addition,
stereo matching is essential in a wide variety of applica-
tions, including 3D reconstruction, robotics, and autonomous
vehicles.

Scharstein and Szeliski [1] revealed that a stereo matching
algorithm performs in four steps in general: matching
cost computation, cost aggregation, disparity optimization,
and disparity refinement. The matching cost computation,
on which we focus in this work, is traditionally done
by patch-based methods using the sum of absolute differ-
ences or normalized cross-correlation. Recently, it has been
shown in [2]–[7] that the matching cost computation using
convolutional neural networks (CNNs) yields more reli-
able costs and improves overall stereo matching perfor-
mances on the Middlebury stereo datasets [8] and the KITTI

datasets [9], [10]. These CNN-based methods can be classi-
fied into two types. The first type uses a CNN to extract
a feature vector from each patch. Then, it compares the
CNN features of two patches via the dot product to yield a
matching cost. On the other hand, the second type replaces the
dot product operation with fully-connected layers. Whereas
the dot product is computationally simpler than the fully-
connected layers, the second type yields more accurate
stereo matching results in general. The first type is adopted
in [2]–[4], while the second type in [2] and [5]–[7]. In this
work, we consider the first type and develop CNN-based
feature extractors.

In this paper, we propose four networks, which are
used independently for matching cost computation. We first
propose two CNN-based multiscale feature extractors, called
network A and network B. Network A is composed
of 25 convolutional layers, while network B consists
of 19 convolutional layers. Both networks generate multi-
scale features, whose receptive field sizes vary from 7× 7
to 39 × 39. Using the multiscale features, we compute
the corresponding multiscale matching costs. These multi-
scale matching costs have a trade-off between reliability and

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

27971

https://orcid.org/0000-0002-4276-1831

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

accuracy. Therefore, we determine an optimal matching cost
by combining the multiscale costs based on edge informa-
tion. Second, we propose two CNN-based uni-scale feature
extractors, called network C and network D. Networks C
and D merge multiscale features into uni-scale ones using
fully-connected layers. In other words, networks C and D
are end-to-end networks to extract uni-scale features. After
obtaining matching costs by employing one of the four
networks, we aggregate the costs using the cross-based cost
aggregation. We then optimize disparities using the NTDE
method [11], which was our preliminary work. In this work,
we lower the complexity of [11] by obtaining a pre-estimated
disparity map from the cost aggregation result. Experimental
results on the Middlebury stereo datasets demonstrate that
the proposed four networks extract reliable features for the
matching cost computation, and that the proposed algorithm
provides competitive performances with the state-of-the-art
algorithms, while requiring lower computational complexity.

The rest of this paper is organized as follows: Section II
reviews related work. Sections III and IV propose the four
networks for the matching cost computation, and Section V
develops the stereo matching algorithm. Section VI discusses
experimental results. Section VII concludes this work.

II. RELATED WORK
A. STEREO MATCHING
In general, stereo matching is performed in four steps [1]:
matching cost computation, cost aggregation, disparity opti-
mization, and disparity refinement.

First, patch-based matching costs are computed, e.g.
the sum of absolute differences (SAD) [12], the sum of
squared differences (SSD) [13]–[15], the normalized cross-
correlation (NCC) [16], or the sum of gradient magni-
tude differences (GRAD) [17]. These costs, however, may
be ineffective in the cases of occlusion, lack of textural
information, incorrect calibration, and noisy input. For
more reliable matching, Hirschmüller [18] exploited the
mutual information between image patches, which is robust
against illumination variation. Also, several stereo matching
algorithms [19]–[22] adopt the census transform [23] for the
matching cost computation. The census transform represents
an image patch with a binary descriptor, by comparing the
intensities of the center pixel and the other pixels within
the patch. The census transform is also combined with
SAD [20] or GRAD [21], [22].

Second, the cost aggregation step sums the matching
costs of neighboring pixels within a support window. Yoon
and Kweon [24] computed an adaptive weight for each
pixel in a support window based on the color similarity
and the geometric distance. By extending this bilateral
filter [24], Chen et al. [25] developed a trilateral filter for
stereo matching. Also, Hosni et al. [26] adopted the guided
filter [27] to preserve edge properties during the cost aggrega-
tion. Zhang et al. [28] constructed an adaptive support region
for each pixel to constrain that pixels within the support

region should have similar disparities. They adopted cross-
based support regions.

Third, a disparity map is obtained by minimizing a
global energy function, which consists of data and smooth-
ness terms in general. Optimization techniques, such as
dynamic programming [29], graph cuts [30] and belief prop-
agation [31], are adopted to minimize energy functions.
Hirschmüller [18] adopted the semiglobal matching (SGM)
to minimize a 2D energy function efficiently by performing
1D minimization in several directions. Due to its low
complexity and relatively high performance, SGM has been
widely used in various stereo matching algorithms [2]–[6],
[20], [32].

Also, slanted-plane models have been introduced to obtain
robust disparity maps [17], [21], [22], [33]–[36]. These
methods find optimal three-dimensional plane parameters for
local disparities. Bleyer et al. [33] initialized planes randomly
and updated them iteratively to lower matching costs.
Assuming that a homogeneous region can be represented by
a single plane, segmentation techniques have been adopted
in the slanted-plane models in [17], [21], [22], [34]–[36].
Hong and Chen [34] computed segment-wise plane parame-
ters based on weighted least-squares regression. To alleviate
the sensitivity to outliers in the least-squares regression,
Klaus et al. [17] solved the plane fitting problem using a
decomposition method, which estimates the horizontal slant
and the vertical slant separately. Yamaguchi et al. [21] formu-
lated an energy function using a hybrid Markov random
field (MRF), which uses continuous random variables for
slanted 3D planes and discrete random variables for occlu-
sion boundaries. Yamaguchi et al. [35] also used super-
pixels to determine planes. Zhang et al. [22] performed
2D triangulation using superpixels and found a plane for
each triangle. Li et al. [36] constructed several superpixel
structures and assigned plane labels to superpixels using an
iterative α-expansion graph cut.
Fourth, most stereo algorithms perform disparity refine-

ment as post-processing. The left-right consistency
check [20], [36], which compares disparities of pixels in a
left image with those of warped pixels in a right image,
is commonly used. Pixels, which fail this consistency check,
are considered to be occluded. Disparities of occluded pixels
are then filled in by superposing neighboring values. Also,
a median filter and a bilateral filter are adopted to refine
disparity maps and remove outliers [2], [11].

B. MATCHING COST COMPUTATION USING CNNs
Recently, CNNs have been adopted with remarkable
successes in various vision tasks, including image classifi-
cation [37]–[39], object detection [40], object tracking [41],
[42], image segmentation [43], [44], and edge detection [45].
Furthermore, CNNs have been also used to learn patch
distance metrics for stereo matching [2]–[7].

Žbontar and LeCun [2] proposed two Siamese
networks–the fast one and the accurate one–to compute
matching costs between image patches. The accurate network

27972 VOLUME 6, 2018

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

FIGURE 1. Training of the triplet network, which is composed of three identical CNNs with shared parameters. We employ the resultant CNN as the
feature extractor. To achieve multiscale feature extraction, we consider losses at hidden layers as well as the last layer. We compute the losses based on
the cosine similarities between pairs of matching features.

FIGURE 2. Two different network architectures to generate multiscale features. Except for the last layers, each convolutional layer contains a ReLU block.
(a) Network A consists of 25 convolutional layers. (b) Network B has 19 convolutional layers.

outperforms the fast one, but its computational complexity is
much higher due to several fully-connected layers at its end.
Chen et al. [3] developed a multiscale deep embedding model
to exploit two different scales of input pairs. Luo et al. [4]
also trained a Siamese network based on the cross-entropy
over all possible disparities. Seki and Pollefeys [5] adopted
a confidence prediction network to improve the prediction
accuracy in difficult regions due to, for example, noise and
reflection. Park and Lee [6] incorporated a per-pixel pyramid
pooling layer into the accurate network in [2] to handle a large
image patch. Ye et al. [7] designed a multi-size pooling layer
and included it in the accurate and fast networks in [2].

III. MULTISCALE FEATURE EXTRACTION NETWORKS
We develop two CNN-based feature extractors for the
matching cost computation in stereo matching. Both extrac-
tors generate multiscale features, but they have different
structures. To train each extractor, we use a triplet network
that consists of three identical CNNs with shared parameters.
The triplet network takes three input patches and is trained
to compare the similarity between a reference patch and a
positive patch with that between the reference patch and a
negative patch. By connecting loss functions to hidden layers,
the resultant CNN is capable of producing multiscale features
with different receptive field sizes.

A. NETWORK ARCHITECTURE
Fig. 1 illustrates the triplet network, which we use to design
the feature extractor. The triplet network includes three

identical CNNs with shared parameters. After its training,
we adopt the resultant CNN as the feature extractor. Given
three input image patches, the triplet network generates their
multiscale features, whose similarities are compared to eval-
uate loss functions at hidden layers and the last layer. Bymini-
mizing the loss functions, we optimize the shared parameters
and construct the multiscale feature extractor.

Fig. 2 shows two feature extraction networks, in which
each convolutional layer contains a rectified linear
unit (ReLU) block. The set of all such convolutional layers
in Fig. 2(a) and (b), respectively, corresponds to a ‘convolu-
tional neural network’ block in Fig. 1.

1) NETWORK A
Fig. 2(a) shows network A with 25 convolutional layers,
the kernel sizes of which are 3 × 3 × 1 at the first layer and
3 × 3 × 112 at the others without padding. The number of
kernels is fixed to 112 at all convolutional layers. Network
A consists of a main network and two sub-networks. In the
main network, 19 convolutional layers are connected serially.
Each sub-network, which has 3 convolutional layers, forks
from 7th or 13th convolutional layer of themain network. The
ReLU activation function follows each convolutional layer,
except the three last layers at the ends of the main network
and the sub-networks. We extract multiscale features from
the outputs of 3rd, 5th, 7th, 13th, and the three last layers.
Table 1 summarizes the CNN structure. Since the output
sizes are bigger than 1 × 1 except for the output of the

VOLUME 6, 2018 27973

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

TABLE 1. The structures of the two networks for multiscale feature
extraction. Networks A and B use input patches of size 39× 39× 1.

19th convolutional layer, we extract features from the centers
of the outputs.

The receptive field of a neuron means the local region in an
input patch affecting the output of the neuron. Note that, as a
feature for the input patch, we use the output of the center
neuron at a convolutional layer. Thus, the receptive field
indicates the effective patch whose information is used for the
matching cost computation. For example, if the center neuron
at 5th convolutional layer is used as the feature, the effective
patch size is 11 × 11 as specified in Table 1. In [4] and [6],
it was demonstrated that a larger receptive field (or effec-
tive patch) provides better stereo matching performance in
general. However, as a receptive field gets larger, the network
simplifies the input information more. This is desirable for
extracting image semantics, but results in a loss of details
in the input. Therefore, the network with a large receptive
field may degrade the matching performance for an image
region with complex texture. To address this issue adap-
tively, we design network A to generate multiscale features
with different receptive field sizes. Specifically, we extract
7 multiscale features from 3rd to last convolutional layers,
as listed in Table 1. Then, we compute matching costs using
themultiscale features and combine those costs based on edge
information, as will be described in Section III-C and III-D.

2) NETWORK B
As shown in Fig. 2(b), network B extracts multiscale
features similarly to network A, but has less convolutional
layers without branching into sub-networks. In other words,
network B has the same structure as the main network in
network A, which has 19 convolutional layers. We extract
multiscale features at 3rd, 5th, 7th, 10th, 13th, 16th, and the
last convolutional layers. Note that the features from 10th and
16th layers substitute for those from the two last layers of the
sub-networks of network A.

B. TRAINING PHASE
Let I (L) and I (R) denote a pair of left and right images for
stereo matching. First, we select a 39 × 39 reference patch
O(L)

p in the left image I (L), whose center pixel is p. Next,
we extract the positive patch O(+)

q in the right image I (R),
which matches O(L)

p in I (L). Note that the difference vector

q − p is the ground-truth disparity. Moreover, we choose a
negative patch O(−)

r randomly in I (R), which does not match
O(L)

p .
To train the triplet network, we feed these three patches

O(L)
p , O(+)

q , and O(−)
r into the three CNNs, as illustrated

in Fig. 1. Note in Table 1 that the output of the last convo-
lutional layer (19th Conv in network A or B) has the size 1×
1× 112, which can be regarded as a 112-dimensional feature
vector. Let f(L), f(+), and f(−) denote such feature vectors for
O(L)

p , O(+)
q , and O(−)

r , respectively. The Euclidean norms of
these feature vectors are scaled to 1 by the normalization
layers, respectively. We train the triplet network so that the
reference feature vector is similar to the positive one but
dissimilar from the negative one. To this end, we compute
two cosine similarities: s(+) between f(L) and f(+), and s(−)

between f(L) and f(−). In other words,

s(+) = (f(L))T f(+), (1)

s(−) = (f(L))T f(−). (2)

Then, we adopt the hinge loss function [46] to penalize the
case s(−) > s(+), which is given by

L(s(+), s(−)) = max
{
0,m+ s(−) − s(+)

}
(3)

where m is a margin.
The hinge loss function in (3) is also connected to the

intermediate convolutional layers, as well as the last convolu-
tional layer, using green blocks in Fig. 2(a) or (b). By training
the triplet network to minimize the sum of the loss func-
tions, we can obtain multiscale features with different recep-
tive fields via a single training process. However, except
for the last convolutional layer, the outputs of the convo-
lutional layers are not vectors, but volumes, as specified
in Table 1. To extract the feature vectors from the interme-
diate convolutional layers, we select the center vectors from
the volumes. We then compute the cosine similarities and
the hinge losses in the same way as the last convolutional
layer. Finally, we train the triplet network using the stochastic
gradient descent to minimize the sum of the multiscale
losses.

C. MULTISCALE FEATURE DESCRIPTION
After training the triplet network, we use its parameters
to construct the corresponding CNN for a full-size image.
To generate an output feature map of the same size as an input
image, we perform zero padding at the convolutional layers.
Given anM ×N ×1 image, the CNN feature extractor yields
a feature map of size M × N × 112 at each convolutional
layer. By using network A or B, we extract 7 feature maps
from the image. LetFn denote the output featuremap, where n
denotes the receptive field size. For the matching cost compu-
tation, we obtain two sets of multiscale feature maps, F (L)

=

{F (L)
7 ,F (L)

11 , . . . ,F
(L)
39 } and F

(R)
= {F (R)

7 ,F (R)
11 , . . . ,F

(R)
39 }, for

the left and right images, respectively.

27974 VOLUME 6, 2018

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

D. MATCHING COST COMPUTATION
We compute matching costs, which are the base information
for obtaining a disparity map in stereo matching. Let Dp be
the set of candidate disparities for pixel p. The matching cost
at p for a candidate disparity d ∈ Dp, which corresponds to
the receptive field size n, is defined as

Cn(p,d) = ‖F (L)
n (p)− F (R)

n (p− d)‖2 (4)

where d = (d, 0).
We combine multiscale matching costs from network

A or B by employing edge information. To this end,
we extract an edge map of the left image I (L) using the HED
edge detector in [45]. In the edge map, each pixel represents
the edge strength within [0, 1]. We consider the sum En(p) of
edge strengths in a squarewindow,whose center is pixel p and
side has size n ∈ N = {7, 11, ..., 39}. Note that the window
size is set to be one of the receptive field sizes. We compute
the difference between the sum of edge values at size n and
its previous size in the ascending order. If the difference is
larger than a threshold ρ1 = 1, we select the matching cost
corresponding to the size n. For example, when the difference
between E11(p) and E7(p) is larger than ρ1, the matching
cost C(p,d) at p is set to be C11(p,d). When the difference
is smaller than ρ1, we compare the next difference between
E15(p) and E11(p), and so on. Notice that, in the case of the
smallest size 7, we check whether the sum E7(p) is larger than
a threshold ρ2 = 35 or not. Also, in the case that all tests for
the 7 receptive field sizes fail, we average all matching costs,
i.e.

C(p,d) =
1
N

∑
n∈N

Cn(p,d) (5)

where N = 7 is the number of receptive field sizes. Fig. 3
illustrates the combination process to select the matching
costs of appropriate receptive field sizes. We see that, for
pixels with high edge strengths, a small receptive field is
selected in general. On the contrary, large receptive fields are
chosen for pixels far from edges.

We represent the result of this selection process using a
3D weight map W (p, n) of size H × W × N , where H and
W are the height and width of the left image. For each pixel
p, the weight for the selected receptive field size n is set to 1,
while those for the other sizes are set to 0.When no single size
is selected, weights are uniformly set to 1

N for all sizes. Then,
in order to smooth the weights, we apply a Gaussian filter
Gσ (p). More specifically, the smoothed weight mapWG(p, n)
is given by

WG(p, n) =
∑
pω

Gσ (pω)W (pω, n) (6)

where σ = 20 is the standard deviation for the Gaussian filter
and pω denotes a neighbor pixel of p. We then normalize the
weights by

W̃G(p, n) =
WG(p, n)∑
n∈N WG(p, n)

. (7)

FIGURE 3. (a) Edge map for an input image. (b)∼(h) Selection results at
each receptive field size from n = 7 to n = 39. White pixels represent the
selected pixels in the corresponding receptive field. For dark gray pixels,
no single receptive field is selected, and the averaging in (5) is performed
instead.

Finally, the combined matching cost at p is defined as a
weighted superposition of the multiscale matching costs,
given by

C(p,d) =
∑
n∈N

W̃G(p, n)Cn(p,d). (8)

IV. MULTISCALE FEATURE EXTRACTION AND
COMBINATION NETWORKS
In the previous section, we propose two networks
(i.e. network A and network B) for extracting multiscale
features. For the matching cost computation, we calculate a
matching cost in each scale and then combine the multiscale
costs based on the edge information. On the other hand,
in this section, we propose two end-to-end networks, called
network C and network D, that not only generate multiscale
features but also combine them into a single feature. More
specifically, these networks extract multiscale outputs of

VOLUME 6, 2018 27975

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

FIGURE 4. The network architectures for extracting and combining multiscale features. (a) Network C includes 3 fully-connected layers, which
combine multiscale features and generates a single feature. (b) Network D consists of 7 convolutional layers and 3 fully-connected layers.

various receptive field sizes from hidden layers and then
combine them using fully-connected layers.

A. NETWORK ARCHITECTURE
We also use the triplet network in Fig. 1 to design the feature
extraction and combination networks. However, note that the
loss function is connected to the last layer only to generate
a single feature. Figs. 4(a) and (b) show the structures of
network C and network D, respectively. Whereas networks A
and B use the outputs of hidden layers as multiscale features,
networks C and D combine the outputs of hidden layers
through fully-connected layers.

1) NETWORK C
In Fig. 4(a), network C consists of two parts. The first part
has the same structure as the whole network B. In addition,
the second part has 3 fully-connected layers, which have
1024 nodes at the first two layers, respectively, and 112 nodes
at the last layer. The ReLU activation follows each convo-
lutional or fully-connected layer except for the last layers
of both parts. The input of the second part is obtained by
concatenating the output responses of the first part. Since
the output responses have different sizes as listed in Table 2,
we only extract their center vectors and concatenate them
along the channel dimension. The second part uses the fully-
connected layers to combine the concatenated features into a
single feature, which becomes the output of network C.

TABLE 2. The structures of the two networks for multiscale feature
extraction and combination. Networks C uses input patches of size
39× 39× 1, while network D uses those of size 15× 15× 1.

2) NETWORK D
In Fig. 4(b), network D has a similar structure to network C,
but has less convolutional layers. More specifically, the first
part is composed of 7 convolutional layers, whose kernel sizes
are 3 × 3 × 1 at the first layer and 3 × 3 × 112 at the

others. The input of the second part is obtained by concate-
nating the output responses of 3rd to 7th convolutional layers.
The second part has 3 fully-connected layers as in network C.
Table 2 summarizes the output sizes and the receptive field
sizes of network D.

B. TRAINING PHASE
For network C, patches O(L)

p , O(+)
q , and O(−)

r have the size
39×39, as in networks A and B. In contrast, for the shallower
networkD, the patch size is 15×15, since the largest receptive
field size of the features is 15×15. To train the triplet network
for network C or D, the same process in Section III-B is
adopted except that the single loss function is connected to
the last layer only.

C. FEATURE DESCRIPTION AND MATCHING
COST COMPUTATION
Given an input image, we generate a single feature map of the
same size by employing the parameters of the triplet network.
To this end, we perform zero padding at the convolutional
layers. Let F (L)

s and F (R)
s denote the single feature maps for

the left and right images, respectively. Then, we compute
the matching cost for a candidate disparity d = (d, 0) at
pixel p by

C(p,d) = ‖F (L)
s (p)− F (R)

s (p− d)‖2. (9)

V. STEREO MATCHING
This section proposes a stereo matching algorithm,
which is based on the matching cost computation in
Sections III and IV. In addition, the proposed algorithm
performs cost aggregation and disparity optimization. After
aggregating matching costs using the cross-based cost
aggregation [28], we optimize the disparity map using the
semiglobal matching with adaptive smoothness constraints
in non-textured regions and on depth edges [11].

A. CROSS-BASED COST AGGREGATION
Most stereo matching methods include the cost aggregation
step. This step aggregates matching costs of pixels in a
support region, in which the pixels tend to have similar inten-
sities. In this work, we aggregate the matching costs, C(p,d)
in (8) or (9), by employing the cross-based cost aggrega-
tion (CBCA) technique [28]. This technique has low compu-
tational complexity but provides relatively high performance.

First, a cross-based local support region is constructed for
each pixel p = (px , py). The region is formed from an upright

27976 VOLUME 6, 2018

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

cross shape, which consists of left, right, up, and bottom arms.
Starting from the left adjacent pixel p1 = (px − 1, py) of p,
pixel pl = (px − l, py) is included in the left arm of p, if the
following two rules are satisfied:

|I (pl)− I (p)| < τ (10)

‖pl − p‖2 < η (11)

where I (p) denotes the pixel intensity at p, τ = 0.04, and
η = 11. The inclusion terminates when either condition
is violated. The resultant left arm is denoted by Lp

=

{p1, ...,pL}. Similarly, the right arm Rp, the up arm Up, and
the bottom arm Bp are formed. Then, to extend the upright
cross to the support region, the left and right arms at each
pixel q ∈ {Up,Bp

} are further considered. In other words,
the cross-based support region Sp of p is given by

Sp
= {Lp,Rp,Up,Bp,Uq,Bq

: q ∈ {Up,Bp
}}. (12)

Fig. 5 shows an example of the support region.

FIGURE 5. The support region of pixel p for the cross-based cost
aggregation (CBCA) [28]. It has the left arm Lp, the right arm Rp, the up
arm Up, and the bottom arm Bp. Also, the left and right arms of each
pixel q in Up ∪Bp are included in the support region.

Next, we aggregate matching costs by averaging the costs
in the support region. In other words, the aggregated cost at
p is given by

Cag(p,d) =
1
|Sp|

∑
q∈Sp

C(q,d) (13)

where |Sp
| is the number of pixels in the support region Sp.

B. DISPARITY OPTIMIZATION
After aggregating matching costs, we optimize a disparity
map. Instead of applying a global optimization method to
maximize the matching performance at the cost of high
complexity, we perform semiglobal optimization, which is
computationally simpler but provides comparable perfor-
mance.We adopt the semiglobal matching (SGM) [18], while
enforcing adaptive smoothness constraints in non-textured
regions and on depth edges [11].

1) SEMIGLOBAL MATCHING
To obtain a dense disparity mapD, an energy function E(D) is
defined, which is composed of data and smoothness terms in
general. In particular, in [18], the energy function is defined as

E(D) =
∑
p

(Cag(p,Dp)

+

∑
q∈Np

P1 · T [|Dp − Dq| = 1]

+

∑
q∈Np

P2 · T [|Dp − Dq| > 1]) (14)

where P1 and P2 are smoothness penalties, and P1 < P2.
Also, T [·] is the indicator function, Dp is the disparity at p,
and Np is the set of adjacent pixels to p. The first term is
the data cost. The second term imposes a small penalty P1 at
pixel p whose disparity differs by one from the disparity of
an adjacent pixel q. Similarly, the third term imposes a larger
penalty P2 at pwhose disparity differs by more than one from
an adjacent disparity.

By applying the SGM technique [18], which decreases
a global energy based on the path-wise optimization,
we attempt to minimize the energy function E(D) efficiently.
For the energy function E(D) in (14), the path-wise matching
cost in a direction r is formulated recursively by

Lr(p,d) = Cag(p,d)

+ min{Lr(p− r,d),min
i
Lr(p− r, i)+ P2

Lr(p− r,d−1)+P1,Lr(p− r,d+1)+P1}

− min
k
Lr(p− r,k). (15)

where da = (d + a, 0), and Lr(p,d) for p outside the image
boundary is set to be infinity. The last subtracting term is for
preventing Lr(p, d) from becoming too large. Unlike [18],
we use only four directions r = (1, 0), (−1, 0), (0, 1), and
(0,−1). Two of them are horizontal, while the other two are
vertical. We also set the penalties P1 and P2 according to the
intensity differences between pixels p and p − r in the left
image and pixels p − d and p − d − r in the right image,
as described in [2] and [20].

2) ADAPTIVE SMOOTHNESS CONSTRAINT IN
NON-TEXTURED REGIONS
In general, non-textured regions, which are flat in pixel
intensities, also have homogeneous disparities. However,
the matching cost computation, including the proposed one,
in non-textured regions is unreliable in general, and the
disparity estimation in such regions is one of the major
challenges in dense stereo matching. Hence, to improve the
matching performance, we detect non-textured regions and
apply an adaptive smoothness constraint in those regions.

To identify non-textured regions, we extract the gradient
maps ∇Ix and ∇Iy in the x and y directions from the input
image I , which are normalized by the mean subtraction
and the standard deviation division. Then, we obtain a set

VOLUME 6, 2018 27977

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

FIGURE 6. (a) An input image and (b) its gradient map, where green
pixels represent the non-textured region PNT.

Pg =
{
p : |∇Ix(p)| ≥ τg or |∇Iy(p)| ≥ τg

}
with a threshold

τg = 0.1.We find a window, which does not include any pixel
in Pg, and declare that all pixels in the window belong to the
non-textured region. In other words, the non-textured region
PNT is defined as

PNT =

p : ∃Wp such that
∑
q∈Wp

T [q ∈ Pg] = 0

 (16)

where Wp is a 31 × 31 window including pixel p. Also,
to reduce false detections, the pixels within ten pixel distances
from q ∈ Pg are excluded from the non-textured region,
as illustrated in Fig. 6.
As mentioned above, in the non-textured region PNT,

disparities tend to be homogeneous or continuous. Hence,
in PNT, we set a large penalty P̂2, instead of P2 in (14), for a
large disparity difference between adjacent pixels by

P̂2(p) =
{
P2 if p /∈ PNT,

σNT · P2 if p ∈ PNT,
(17)

where σNT is an amplification factor greater than 1, which is
fixed to σNT = 2 in this work.

3) ADAPTIVE SMOOTHNESS CONSTRAINT
ON DEPTH EDGES
We develop another adaptive smoothness constraint, which
employs a depth edge map. We exploit the tendency that
depth discontinuity occurs at intensity edges in an input
image. However, intensity edges do not always imply depth
discontinuity. Therefore, we detect depth edges selectively
from the set of color edges, similarly to [47], but using a
simpler scheme. Notice that a pre-estimated disparity map
using the matching costs in Section V-A can inform of depth
discontinuity roughly. The pre-estimated disparity map is
defined as

Dpre(p) = argmin
d
Cag(p,d). (18)

We use this pre-estimated disparitymap to detect depth edges.
We obtain an edge map EI for the input image. We also

extract an edge map EP from the pre-estimated disparity map,
which is dilated to broaden the edges. For computing both
edge maps, we use the sketch tokens in [48]. We obtain
two sets of edge pixels PI = {p | EI(p) ≥ ε} and PP =

{p | EP(p) ≥ ε} with a threshold ε = 0.5. The set of depth

edge pixels PDE is then defined as the intersection of PI and
PP, PDE = PI ∩ PP. Fig. 7 shows step-by-step results of
detecting the depth edges. We see in Fig. 7(f) that the depth
edges faithfully indicate large differences between neigh-
boring disparities.

FIGURE 7. The extraction of depth edges: (a) input image I , (b) its edge
pixels PI, (c) pre-estimated disparity image Dpre, (d) its edge pixels PP,
(e) ground-truth depth map, and (f) depth edge pixels PDE.

For depth edge pixels in PDE, the probability of a large
difference between adjacent disparities is very high. There-
fore, contrary to ordinary pixels, for those pixels in PDE,
we set a small penalty for a large difference of adjacent
disparities and a large penalty for a small difference. To this
end, by adding a new smoothness term, we modify the energy
function in (14) to

Ê(D) =
∑
p

(Cag(p,Dp)

+

∑
q∈Np

PE0 (p) · T [Dp = Dq]

+

∑
q∈Np

PE1 (p) · T [|Dp − Dq| = 1]

+

∑
q∈Np

PE2 (p) · T [|Dp − Dq| > 1]) (19)

and determine the three adaptive penalties by

PE0 (p) =
{
0 if p /∈ PDE,

P̂2(p) if p ∈ PDE,
(20)

27978 VOLUME 6, 2018

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

TABLE 3. Step-by-step comparison of the proposed algorithm with the conventional MC-CNN algorithm [2] on the 2014 Middlebury stereo training set.

PE1 (p) =
{
P1 if p /∈ PDE,

P̂2(p) if p ∈ PDE,
(21)

PE2 (p) =
{
P̂2(p) if p /∈ PDE,

P1 if p ∈ PDE.
(22)

Note that P̂2(p) defined in (17) is larger than P1. Therefore,
neighboring disparity differences of 0 or 1 are strongly penal-
ized for depth edge pixels in PDE, whereas differences larger
than 1 are strongly penalized for ordinary pixels in Pc

DE.
Similarly to (15), we minimize Ê(D) by formulating the

path-wise matching costs recursively as

L̂r(p,d) = Cag(p,d)−min
k
L̂r(p− r,k)

+ min{L̂r(p− r,d)+ PE0 (p),

L̂r(p− r,d−1)+ PE1 (p),

L̂r(p− r,d+1)+ PE1 (p), (23)

min
i
L̂r(p− r, i)+ PE2 (p)}.

Then, the dense disparity map D∗ is optimized by summing
the path-wise matching costs in all four directions and mini-
mizing the sum,

D∗p = argmin
d

∑
r

L̂r(p,d). (24)

4) POST-PROCESSING
We refine this disparity map in a post-processing step. First,
for the left-right consistency check [49], the left disparitymap
DL is computed by considering the left image as a reference
image, and the right disparity map DR is computed similarly
in a symmetrical manner. Let pd denote the corresponding
pixel in the right image that matches pixel p in the left
image. If

∣∣∣DL
p + D

R
pd

∣∣∣ > 1, the disparity of p is regarded as
erroneous and interpolated using those of neighboring pixels.
Then, the subpixel estimation [50] is performed through the
quadratic curve fitting of neighboring costs. Finally, a 5 × 5
median filter and a bilateral filter are applied subsequently.

VI. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTING
We train each network in Fig. 2 or Fig. 4 in three steps. Let
us describe the training procedure for network A, B, or D.
First, we train the front part of the network from the
first to the seventh convolutional layers with three losses

for network A or B, while with five losses for network D.
Before the training, we initialize the parameters of the first
five convolutional layers using those of the MC-CNN-acrt
network in [2]. Second, we train the rest of the network while
fixing the front part in the first step. Third, we train the
entire network jointly. In the case of network C, the trained
network B is used as the front part. After fixing the front
part, the fully connected layers are trained. Finally, the entire
network is trained together.

We perform each training step via the stochastic gradient
descent with a momentum of 0.9 and a batch size of 64 exam-
ples for 14 epochs. The learning rate is 0.003 for the first
eleven epochs and 0.0003 for the last three epochs. To train
each network, we use the triplet network structure as illus-
trated in Fig. 1. The training is performed in a single
NVIDIA GeForce GTX 1080 Ti GPU. In order to train the
networks and evaluate the stereo matching results, we use the
Middlebury datasets [8]. The Middlebury stereo benchmark
is composed of 2001, 2003, 2005, 2006, and 2014 datasets,
which have full, half, and quarter resolutions. We use the half
resolution. In these datasets, 64 image pairs and their ground
truth disparity vectors are available. Among them, we select
15 image pairs as a test set and use the other image pairs to
train the four networks. Specifically, 26Mpatch pairs are used
for training.

The proposed algorithm has five parameters, which are
fixed in all experiments. Specifically, τ = 0.04 in (10),
η = 11 in (11), P1 = 1 and P2 = 45 in (14), and
σNT = 2 in (17). To assess stereo matching results, we adopt
the average disparity error (Avg Err) and the percentage of
disparity errors (2.0 Err). In 2.0 Err, an estimated disparity is
declared as erroneous, if the distance between the estimated
disparity and its ground truth is larger than 2 pixels in the full
resolution.

B. COMPARATIVE PERFORMANCE EVALUATION
Table 3 compares the four proposed networks with the
conventional stereo matching algorithm MC-CNN [2] on
the 2014 Middlebury dataset. MC-CNN has two versions:
MC-CNN-fst for fast processing andMC-CNN-acrt for accu-
rate estimation. To obtain the MC-CNN results, we use the
provided source code1 and train the two versions using the

1https://github.com/jzbontar/mc-cnn

VOLUME 6, 2018 27979

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

same set of image pairs and ground truth that we employ to
train the proposed four networks.

We evaluate the stereo matching performance after each
step: pure matching cost (PMC) computation, CBCA, opti-
mization, and post-processing. To this end, we perform stereo
matching using four methods:

• Baseline: PMC + winner-takes-all (WTA),
• Baseline + PP: PMC +WTA + post-processing,
• CBCA: PMC + CBCA +WTA + post-processing,
• Optimization: PMC + CBCA + optimization + post-
processing.

Note that WTA selects the disparity, corresponding to the
minimum matching cost, for each pixel. For the optimization
step, we adopt NTDE [11] in Section V-B. For MC-CNN,
we use its optimization method based on SGM in [2].

In Table 3, the proposed networks A, B, and D outper-
form the conventional MC-CNN for all four steps. Also,
network C provides better performances than MC-CNN
except for the ‘Optimization’ step. Note that, for straight-
forward stereo matching without sophisticated cost aggre-
gation and disparity optimization, it is beneficial to have a
large receptive field. In networks A, B, and C, the maximum
receptive field size is 39× 39. On the other hand, the recep-
tive field sizes of MC-CNN-fst and MC-CNN-acrt are
9× 9 and 11× 11, respectively. Therefore, for the ‘Base-
line’ and ‘Baseline + PP’ steps, networks A, B, and C
outperform MC-CNN significantly. Even though the recep-
tive size of network D is 15 × 15 only, it provides compet-
itive results to the other proposed networks, by employing
the fully-connected layers effectively. For the ‘CBCA’ and
‘Optimization’ steps, the performance gaps between the
proposed algorithm and the conventional MC-CNN decrease,
but network A still achieves the best performances for the
‘CBCA’ and ‘Optimization’ steps.

Network A outperforms network B in all cases, even
though both networks provide multiscale features of the same
receptive field sizes. This is because network A contains the
additional convolutional layers in the sub-networks. Thus,
the features extracted from network A are more effective.
Also, the competitive performances of networks C and D
indicate that the fully-connected layers successively replace
thematching cost combination technique based on edge infor-
mation. Note that network C surpasses network D for the
‘Baseline’ and ‘Baseline + PP’ steps, since it has the larger
receptive field size of 39× 39.
Table 4 compares the matching cost computation perfor-

mances of the proposed algorithm with those of the conven-
tional CNN-based algorithms. To this end, the ‘Baseline’
method is used to compute disparities. We also compare
the computational times. In the ‘Ours’ column, we report
the running times that we measured in the same environ-
ment. In the other column, we list the time measurements
reported in [7]. In Table 4, the algorithms are divided into
two categories. The algorithms in the upper part focus on
accuracy rather than on computational complexity, and thus

TABLE 4. Matching cost computation performances of the proposed
algorithm and the conventional CNN-based algorithms. In this test,
the ‘Baseline’ method is used to compute disparities.

they use fully-connected layers in the matching cost compu-
tation. In contrast, the algorithms in the lower part extract
features from the networks and then compute matching costs
simply via the inner product. So they are faster in general.
Note that Ye et al. (accurate) [7] yields the smallest error.
However, the proposed four networks provide smaller errors
than Ye et al. (fast) and MC-CNN-fst [2] in the fast category.
The running times of the proposed networks are longer than
MC-CNN-fst [2], since the proposed networks need addi-
tional computations for combining multiscale information.
However, despite these computations, the proposed networks
are faster, as well as more accurate, than MC-CNN-acrt.
Ye et al. [7] improves the performance of MC-CNN-acrt,
but the proposed networks are more accurate than their fast
version.

C. MULTISCALE FEATURES
Next, Table 5 lists the stereo matching performances using
multiscale features of network A. Network A generates seven
multiscale features of different receptive field sizes. CostAvg
denotes the case of averaging the seven matching costs
without adaptive weights, while the proposed network A uses
the adaptive weighting scheme in Section III-D. We observe
that the matching performance generally improves as the

TABLE 5. Stereo matching performances using multiscale features of
network A.

27980 VOLUME 6, 2018

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

FIGURE 8. Examples of estimated disparities on the Middlebury stereo datasets. In this test, the ‘Optimization’ method is used, and 15× 15 and
39× 39 features are extracted from network A. Red pixels depict disparity errors, which are larger than 2 pixels. The other pixels depict estimated
disparities in gray levels.

receptive field gets larger, but it saturates at about 27 × 27.
The combination of multiscale features is not effective in
the simple ‘Baseline + PP’ method, but it improves the
performance significantly in the ‘Optimization’ method.

In the ‘Baseline + PP’ method, a larger receptive field
is more effective on average. However, a small receptive
field is also useful in some cases. Specifically, features of
small receptive fields provide good matching performance
on regions with complicated texture, whereas those of large
receptive fields are effective on flat regions. Thus, multiscale
features have their own pros and cons. To exploit their pros,
we combine the matching costs, computed from multi-scale
features, adaptively using edge information. Thus, network A
achieves the best performance in the ‘Optimization’ method
in Table 5.

D. QUALITATIVE RESULTS
Fig. 8 illustrates estimated disparities on the ‘Playtable’ and
‘Vintage’ image pairs. For both pairs, the 39× 39 receptive

field yields more reliable matching results than the 15× 15
receptive field on textureless regions. Also, notice that
all proposed networks estimate disparities more accu-
rately than single features, by combining multiscale
features.

E. EVALUATION ON MIDDLEBURY STEREO BENCHMARK
Table 6 shows the evaluation results on theMiddlebury stereo
training dense set benchmark.2 We compare the proposed
networks A, B, C, and Dwith the fourteen published methods
that yield the lowest 2.0 Err results. It is worthy to point
out that networks A, B and D are much faster than the top
ten compared methods. For example, network A outperforms
MC-CNN-acrt [2] and is about 4 times faster. These results
indicate that the proposed algorithm provides competitive
stereo matching performance at a relatively low computa-
tional cost.

2http://vision.middlebury.edu/stereo/eval3/

VOLUME 6, 2018 27981

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

TABLE 6. Comparison of the proposed algorithms with the fourteen
conventional methods on the Middlebury stereo training dense set
benchmark.

VII. CONCLUSIONS
In this work, we proposed four CNN-based feature extrac-
tors (networks A, B, C, and D) for stereo matching cost
computation. For training each network, we adopted a triplet
structure, which comprises three identical CNNs. To extract
multiscale features, we added the hinge marginal loss func-
tion to hidden convolutional layers, as well as at the end of
the network. To find optimal matching costs, we combined
multiscale matching costs, which are extracted by network
A or B using edge information. On the other hand, we used
uni-scale features from network C or D to compute matching
costs. After obtaining the matching costs, we carried out the
cross-based cost aggregation [28] and optimized disparities
using the NTDE method [11].

Experimental results demonstrated that the proposed
algorithm provides competitive stereo matching perfor-
mance with the state-of-the-art algorithms, while requiring
lower computational complexity. Among the four proposed
networks, network A yields the best performance for the
‘Optimization’ step, while network C performs the best for
the ‘Baseline’ step. On the other hand, considering the trade-
off between performance and complexity, network D is the
most efficient architecture for stereo matching with a negli-
gible loss in the matching accuracy.

REFERENCES
[1] D. Scharstein and R. Szeliski, ‘‘A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms,’’ Int. J. Comput. Vis., vol. 47,
nos. 1–3, pp. 7–42, Apr. 2002.

[2] J. Žbontar and Y. LeCun, ‘‘Stereo matching by training a convolutional
neural network to compare image patches,’’ J. Mach. Learn. Res., vol. 17,
no. 1, pp. 2287–2318, Jan. 2016.

[3] Z. Chen, X. Sun, L. Wang, Y. Yu, and C. Huang, ‘‘A deep visual corre-
spondence embedding model for stereo matching costs,’’ in Proc. ICCV,
Dec. 2015, pp. 972–980.

[4] W. Luo, A. G. Schwing, and R. Urtasun, ‘‘Efficient deep learning for stereo
matching,’’ in Proc. CVPR, Jun. 2016, pp. 5696–5703.

[5] A. Seki and M. Pollefeys, ‘‘Patch based confidence prediction for dense
disparity map,’’ in Proc. BMVC, 2016, pp. 1–13.

[6] H. Park and K. M. Lee, ‘‘Look wider to match image patches with convo-
lutional neural networks,’’ IEEE Signal Process. Lett., vol. 24, no. 12,
pp. 1788–1792, Dec. 2017.

[7] X. Ye, J. Li, H. Wang, H. Huang, and X. Zhang, ‘‘Efficient stereo matching
leveraging deep local and context information,’’ IEEE Access, vol. 5,
pp. 18745–18755, 2017.

[8] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić,
X. Wang, and P. Westling, ‘‘High-resolution stereo datasets with subpixel-
accurate ground truth,’’ in Proc. GCPR, 2014, pp. 31–42.

[9] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous
driving? The KITTI vision benchmark suite,’’ in Proc. CVPR, Jun. 2012,
pp. 3354–3361.

[10] M. Menze and A. Geiger, ‘‘Object scene flow for autonomous vehicles,’’
in Proc. CVPR, Jun. 2015, pp. 3061–3070.

[11] K.-R. Kim and C.-S. Kim, ‘‘Adaptive smoothness constraints for efficient
stereo matching using texture and edge information,’’ in Proc. ICIP,
Sep. 2016, pp. 3429–3433.

[12] S. Birchfield and C. Tomasi, ‘‘A pixel dissimilarity measure that is insensi-
tive to image sampling,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 4, pp. 401–406, Apr. 1998.

[13] T. Kanade andM.Okutomi, ‘‘A stereomatching algorithmwith an adaptive
window: Theory and experiment,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 16, no. 9, pp. 920–932, Sep. 1994.

[14] A. Fusiello, V. Roberto, and E. Trucco, ‘‘Efficient stereo with multiple
windowing,’’ in Proc. CVPR, Jun. 1997, pp. 858–863.

[15] D. Kong and H. Tao, ‘‘A method for learning matching errors in stereo
computation,’’ in Proc. BMVC, 2004, pp. 1–10.

[16] D. Kong and H. Tao, ‘‘Stereo matching via learning multiple experts
behaviors,’’ in Proc. BMVC, 2006, pp. 1–10.

[17] A. Klaus, M. Sormann, and K. Karner, ‘‘Segment-based stereo matching
using belief propagation and a self-adapting dissimilarity measure,’’ in
Proc. IEEE ICPR, Aug. 2006, pp. 15–18.

[18] H. Hirschmüller, ‘‘Stereo processing by semiglobal matching and mutual
information,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 328–341, Feb. 2008.

[19] H. Hirschmüller and D. Scharstein, ‘‘Evaluation of stereo matching costs
on images with radiometric differences,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 9, pp. 1582–1599, Sep. 2009.

[20] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang, ‘‘On building
an accurate stereo matching system on graphics hardware,’’ in Proc. IEEE
ICCV Workshops, Nov. 2011, pp. 467–474.

[21] K. Yamaguchi, T. Hazan, D. McAllester, and R. Urtasun, ‘‘Continuous
Markov random fields for robust stereo estimation,’’ in Proc. ECCV,
Oct. 2012, pp. 45–58.

[22] C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao, and Y. Rui, ‘‘MeshStereo:
A global stereo model with mesh alignment regularization for view inter-
polation,’’ in Proc. ICCV, Dec. 2015, pp. 2057–2065.

[23] R. Zabih and J. Woodfill, ‘‘Non-parametric local transforms for computing
visual correspondence,’’ in Proc. ECCV, 1994, pp. 151–158.

[24] K.-J. Yoon and I. S. Kweon, ‘‘Adaptive support-weight approach for corre-
spondence search,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,
pp. 650–656, Apr. 2006.

[25] D. Chen,M.Ardabilian, and L. Chen, ‘‘A fast trilateral filter-based adaptive
support weight method for stereo matching,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 25, no. 5, pp. 730–743, May 2015.

[26] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, ‘‘Fast
cost-volume filtering for visual correspondence and beyond,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 2, pp. 504–511, Feb. 2013.

[27] K. He, J. Sun, and X. Tang, ‘‘Guided image filtering,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.

[28] K. Zhang, J. Lu, and G. Lafruit, ‘‘Cross-based local stereo matching using
orthogonal integral images,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 19, no. 7, pp. 1073–1079, Jul. 2009.

[29] S. Birchfield and C. Tomasi, ‘‘Depth discontinuities by pixel-to-pixel
stereo,’’ Int. J. Comput. Vis., vol. 35, no. 3, pp. 269–293, 1999.

[30] Y. Boykov, O. Veksler, and R. Zabih, ‘‘Fast approximate energy minimiza-
tion via graph cuts,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 11, pp. 1222–1239, Nov. 2001.

27982 VOLUME 6, 2018

K.-R. Kim et al.: Multiscale Feature Extractors for Stereo Matching Cost Computation

[31] J. Sun, N.-N. Zheng, and H.-Y. Shum, ‘‘Stereo matching using belief
propagation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 7,
pp. 787–800, Jul. 2003.

[32] S. N. Sinha, D. Scharstein, and R. Szeliski, ‘‘Efficient high-resolution
stereo matching using local plane sweeps,’’ in Proc. CVPR, Jun. 2014,
pp. 1582–1589.

[33] M. Bleyer, C. Rhemann, and C. Rother, ‘‘Patchmatch stereo-stereo
matching with slanted support windows,’’ in Proc. BMVC, 2011, pp. 1–11.

[34] L. Hong and G. Chen, ‘‘Segment-based stereo matching using graph cuts,’’
in Proc. CVPR, Jun. 2004, pp. 74–81.

[35] K. Yamaguchi, D. McAllester, and R. Urtasun, ‘‘Efficient joint segmen-
tation, occlusion labeling, stereo and flow estimation,’’ in Proc. ECCV,
Sep. 2014, pp. 756–771.

[36] L. Li, S. Zhang, X. Yu, and L. Zhang, ‘‘PMSC: Patchmatch-based super-
pixel cut for accurate stereo matching,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 28, no. 3, pp. 679–692, Mar. 2016.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-
tion with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[38] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recogntion,’’ in Proc. ICLR, 2015, pp. 1–12.

[39] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. CVPR, Jun. 2016, pp. 770–778.

[40] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. CVPR,
Jun. 2014, pp. 580–587.

[41] H.-U. Kim and C.-S. Kim, ‘‘CDT: Cooperative detection and tracking
for tracing multiple objects in video sequences,’’ in Proc. ECCV, 2016,
pp. 851–867.

[42] Y. J. Koh and C.-S. Kim, ‘‘CDTS: Collaborative detection, tracking, and
segmentation for online multiple object segmentation in videos,’’ in Proc.
ICCV, Oct. 2017, pp. 3621–3629.

[43] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ in Proc. CVPR, Jun. 2015, pp. 3431–3440.

[44] Y. J. Koh and C.-S. Kim, ‘‘Primary object segmentation in videos based
on region augmentation and reduction,’’ in Proc. CVPR, Jul. 2017,
pp. 7417–7425.

[45] S. Xie and Z. Tu, ‘‘Holistically-nested edge detection,’’ in Proc. ICCV,
2015, pp. 1395–1403.

[46] J.Wang et al., ‘‘Learning fine-grained image similarity with deep ranking,’’
in Proc. CVPR, Jun. 2014, pp. 1386–1393.

[47] D. Chen, M. Ardabilian, and L. Chen, ‘‘Depth edge based trilateral filter
method for stereo matching,’’ in Proc. ICIP, Sep. 2015, pp. 2280–2284.

[48] J. J. Lim, C. L. Zitnick, and P. Dollár, ‘‘Sketch tokens: A learned mid-level
representation for contour and object detection,’’ inProc. CVPR, Jun. 2013,
pp. 3158–3165.

[49] S. D. Cochran and G. Medioni, ‘‘3-D surface description from binoc-
ular stereo,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 10,
pp. 981–994, Oct. 1992.

[50] Q. Yang, L.Wang, R. Yang, H. Stewénius, and D. Nistér, ‘‘Stereo matching
with color-weighted correlation, hierarchical belief propagation and occlu-
sion handling,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 3,
pp. 492–504, Mar. 2009.

[51] T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura, ‘‘Continuous 3D label
stereo matching using local expansion moves,’’ IEEE Trans. Pattern Anal.
Mach. Intell., to be published, doi: 10.1109/TPAMI.2017.2766072.

[52] L. Li, X. Yu, S. Zhang, X. Zhao, and L. Zhang, ‘‘3D cost aggregation with
multiple minimum spanning trees for stereomatching,’’Appl. Opt., vol. 56,
no. 12, pp. 3411–3420, 2017.

[53] S. Drouyer, S. Beucher, M. Bilodeau, M.Moreaud, and L. Sorbier, ‘‘Sparse
stereo disparity map densification using hierarchical image segmentation,’’
in Proc. Int. Symp. Math. Morphol., 2017, pp. 172–184.

[54] S. Zhang, W. Xie, G. Zhang, H. Bao, and M. Kaess, ‘‘Robust stereo
matching with surface normal prediction,’’ in Proc. ICRA, May/Jun. 2017,
pp. 2540–2547.

[55] J. Barron and B. Poole, ‘‘The fast bilateral solver,’’ in Proc. ECCV, 2016,
pp. 617–632.

[56] P. Knöbelreiter, C. Reinbacher, A. Shekhovtsov, and T. Pock, ‘‘End-to-end
training of hybrid CNN-CRF models for stereo,’’ in Proc. CVPR, 2017,
pp. 2339–2348.

[57] A. Li, D. Chen, Y. Liu, and Z. Yuan, ‘‘Coordinating multiple
disparity proposals for stereo computation,’’ in Proc. CVPR, Jun. 2016,
pp. 4022–4030.

KYUNG-RAE KIM received the B.S. degree
in electrical engineering from Korea University,
Seoul, South Korea, in 2014, where he is currently
pursuing the Ph.D. degree in electrical engi-
neering. His research interests include computer
vision and machine learning and especially in the
problems of stereo matching.

YEONG JUN KOH (S’13) received the B.S.
and Ph.D. degrees in electrical engineering from
Korea University, Seoul, South Korea, in 2011 and
2018, respectively. His research interests include
computer vision and machine learning and espe-
cially in the problems of video object discovery
and segmentation.

CHANG-SU KIM (S’95–M’01–SM’05) received
the Ph.D. degree in electrical engineering from
Seoul National University (SNU). From 2000 to
2001, hewas aVisiting Scholar with the Signal and
Image Processing Institute, University of Southern
California at Los Angeles. From 2001 to 2003,
he coordinated the 3-D Data Compression Group,
National Research Laboratory for 3-D Visual
Information Processing, SNU. From 2003 to 2005,
he was an Assistant Professor with the Department

of Information Engineering, The Chinese University of Hong Kong. In 2005,
he joined the School of Electrical Engineering, Korea University, where
he is currently a Professor. He has authored over 250 technical papers in
international journals and conferences. His current research interests include
image processing and computer vision. He is a member of the Multimedia
Systems and Application Technical Committee of the IEEE Circuits and
Systems Society. He was an APSIPA Distinguished Lecturer from 2017 to
2018. He received the Distinguished Dissertation Award in 2000 for his
Ph.D. degree, the IEEK/IEEE Joint Award for Young IT Engineer of the
Year in 2009, and the Best Paper Award for the Journal of Visual Communi-
cation and Image Representation in 2014. He served as an Editorial Board
Member for the Journal of Visual Communication and Image Representation
and an Associate Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING.
He is a Senior Area Editor of the Journal of Visual Communication and
Image Representation and an Associate Editor of the IEEE TRANSACTIONS ON

MULTIMEDIA.

VOLUME 6, 2018 27983

	INTRODUCTION
	RELATED WORK
	STEREO MATCHING
	MATCHING COST COMPUTATION USING CNNs

	MULTISCALE FEATURE EXTRACTION NETWORKS
	NETWORK ARCHITECTURE
	NETWORK A
	NETWORK B

	TRAINING PHASE
	MULTISCALE FEATURE DESCRIPTION
	MATCHING COST COMPUTATION

	MULTISCALE FEATURE EXTRACTION AND COMBINATION NETWORKS
	NETWORK ARCHITECTURE
	NETWORK C
	NETWORK D

	TRAINING PHASE
	FEATURE DESCRIPTION AND MATCHING COST COMPUTATION

	STEREO MATCHING
	CROSS-BASED COST AGGREGATION
	DISPARITY OPTIMIZATION
	SEMIGLOBAL MATCHING
	ADAPTIVE SMOOTHNESS CONSTRAINT IN NON-TEXTURED REGIONS
	ADAPTIVE SMOOTHNESS CONSTRAINT ON DEPTH EDGES
	POST-PROCESSING

	EXPERIMENTAL RESULTS
	EXPERIMENTAL SETTING
	COMPARATIVE PERFORMANCE EVALUATION
	MULTISCALE FEATURES
	QUALITATIVE RESULTS
	EVALUATION ON MIDDLEBURY STEREO BENCHMARK

	CONCLUSIONS
	REFERENCES
	Biographies
	KYUNG-RAE KIM
	YEONG JUN KOH
	CHANG-SU KIM

