Supplemental Materials on "Continuously Masked Transformer for Image Inpainting"

S-1. Implementation details

The number of channels is set to 768 in CMT. Each MSAU block contains two MLP layers, as shown Figure S-1(a). It has the same structure as ViT [2], but the attention layer is replaced by the proposed masked attention. In each MLP layer, we also update the mask using the error propagator ϕ , as done in (2) and (8). On the other hand, Figure S-1(b) shows the detailed structure of the refinement network where we set C = 32. Here, Swin blocks are labeled as '(n, k)', where n is the number of blocks and k is the window size. The number of tokens decreases by half and increases by a factor of two through the patch merging layer [7] and the up-sampling layer, respectively. The up-sampling layer consists of one convolutional layer followed by bilinear interpolation. We use the Adam optimizer [4] with a learning rate of 1×10^{-4} . The proposed algorithm is trained with mask patterns generated by the free-form mask generator in [9] and resized images from the Places2 and CelebA-HQ datasets.

The running times on a 256×256 image are 0.018s and 0.027s for coarse and refinement networks, respectively, and the number of parameters are 73M and 70M.

Figure S-1: The structures of (a) the MSAU block and (b) the refinement network.

S-2. Comparison on high-resolution images

We compare the proposed algorithm with HiFill [8] and MAT [5] on 512×512 images. We randomly select 12,000 test images from 36,500 validation images in Places2 [10] and use the six mask sets in the irregular mask dataset [6]. Again, the proposed CMT performs the best in all tests for all H2I ratio ranges with no exception.

Table S-1: Quantitative comparison on 512×512 images from the Places2 dataset [10] according to the hole-to-image (H2I) area ratios.

	H2I $\in (0.01, 0.1]$			$H2I \in (0.1, 0.2]$			H2I $\in (0.2, 0.3]$		
	PSNR(†)	SSIM(†)	$FID(\downarrow)$	PSNR(†)	SSIM(†)	$FID(\downarrow)$	PSNR(†)	SSIM(†)	$FID(\downarrow)$
HiFill [8]	29.56	0.9656	7.20	24.31	0.9170	16.72	21.54	0.8624	28.33
MAT [5]	34.05	0.9838	2.59	27.53	0.9544	6.74	24.01	0.9161	11.77
CMT (Proposed)	34.80	0.9844	2.55	28.63	0.9568	6.64	25.29	0.9211	11.69
-									
	на	$2I \in (0.3, 0.4)$	4]	на	$2I \in (0.4, 0.4)$	5]	H2	$2I \in (0.5, 0.5)$	6]
	H2 PSNR(†)	$2\mathbf{I} \in (0.3, 0.4)$ SSIM(\uparrow)	4] FID(↓)	H2 PSNR(†)	$2\mathbf{I} \in (0.4, 0.4]$ SSIM(\uparrow)	5] FID(↓)	H2 PSNR(†)	$2\mathbf{I} \in (0.5, 0.5]$ $\mathbf{SSIM}(\uparrow)$	6] FID(↓)
HiFill [8]	H2 PSNR(†) 19.68	$2I \in (0.3, 0.4]$ $SSIM(\uparrow)$ 0.8076	4] FID(↓) 42.23	H2 PSNR(†) 17.95	$2I \in (0.4, 0.4]$ $SSIM(\uparrow)$ 0.7422	5] FID(↓) 64.20	H2 PSNR(†) 15.85	$2I \in (0.5, 0.$ $SSIM(\uparrow)$ 0.6565	6] FID(↓) 98.68
HiFill [8] MAT [5]	H2 PSNR(†) 19.68 21.68	$2I \in (0.3, 0.00)$ SSIM(\uparrow) 0.8076 0.8746	4] FID(↓) 42.23 16.31	H2 PSNR(†) 17.95 19.80	$2I \in (0.4, 0.1)$ SSIM(\uparrow) 0.7422 0.8271	5] FID(↓) 64.20 21.29	H2 PSNR(†) 15.85 17.16	$2I \in (0.5, 0.5]$ SSIM(\uparrow) 0.6565 0.7547	6] FID(↓) 98.68 29.46

S-3. More qualitative comparisons

Figures S-2 to S-6 compare qualitative results of the proposed CMT algorithm with those of conventional algorithms.

Figure S-2: Qualitative comparison of inpainted images on the Places2 dataset [10].

Figure S-3: Qualitative comparison of inpainted images on the Places2 dataset [10].

Figure S-4: Qualitative comparison of inpainted images on the CelebA-HQ dataset [3].

Figure S-5: Qualitative comparison of inpainted images on the DTD dataset [1].

Figure S-6: Qualitative comparison of inpainted images on the DTD dataset [1].

References

- Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In CVPR, 2014. S-5, S-6
- [2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2020. S-1
- [3] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for improved quality, stability, and variation. In *ICLR*, 2017. S-4
- [4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. S-1
- [5] Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. MAT: Mask-aware transformer for large hole image inpainting. In CVPR, 2022. S-1
- [6] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. Image inpainting for irregular holes using partial convolutions. In ECCV, 2018. S-1
- [7] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *ICCV*, 2021. S-1
- [8] Zili Yi, Qiang Tang, Shekoofeh Azizi, Daesik Jang, and Zhan Xu. Contextual residual aggregation for ultra high-resolution image inpainting. In CVPR, 2020. S-1
- [9] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-form image inpainting with gated convolution. In *ICCV*, 2019. S-1
- [10] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million image database for scene recognition. *IEEE Trans. Pattern Anal. Mach. Intell.*, 40(6):1452–1464, 2017. S-1, S-2, S-3