Supplemental Materials on
“Continuously Masked Transformer for Image Inpainting”

S-1. Implementation details

The number of channels is set to 768 in CMT. Each MSAU block contains two MLP layers, as shown Figure S-1(a). It
has the same structure as ViT [2], but the attention layer is replaced by the proposed masked attention. In each MLP layer,
we also update the mask using the error propagator ¢, as done in (2) and (8). On the other hand, Figure S-1(b) shows the
detailed structure of the refinement network where we set C' = 32. Here, Swin blocks are labeled as ‘(n, k)’, where n is the
number of blocks and & is the window size. The number of tokens decreases by half and increases by a factor of two through
the patch merging layer [7] and the up-sampling layer, respectively. The up-sampling layer consists of one convolutional
layer followed by bilinear interpolation. We use the Adam optimizer [4] with a learning rate of 1 x 10~*. The proposed
algorithm is trained with mask patterns generated by the free-form mask generator in [9] and resized images from the Places2
and CelebA-HQ datasets.

The running times on a 256 x 256 image are 0.018s and 0.027s for coarse and refinement networks, respectively, and the
number of parameters are 73M and 70M.
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Figure S-1: The structures of (a) the MSAU block and (b) the refinement network.

S-2. Comparison on high-resolution images

We compare the proposed algorithm with HiFill [8] and MAT [5] on 512 x 512 images. We randomly select 12,000 test
images from 36,500 validation images in Places2 [10] and use the six mask sets in the irregular mask dataset [6]. Again, the
proposed CMT performs the best in all tests for all H2I ratio ranges with no exception.

Table S-1: Quantitative comparison on 512 x 512 images from the Places2 dataset [ 10] according to the hole-to-image (H2I) area ratios.

| H2I € (0.01,0.1] | H2I € (0.1,0.2] | H2I € (0.2,0.3]
| PSNR(?) SSIM(?) FID(}) | PSNR(1) SSIM(1) FID(}) | PSNR(1) SSIM(1) FID()
HiFill [8] ‘ 29.56 0.9656 7.20 ‘ 24.31 0.9170 16.72 ‘ 21.54 0.8624 28.33
\ \

MAT [5] 34.05 0.9838 2.59 27.53 0.9544 6.74 24.01 0.9161 11.77
CMT (Proposed) ‘ 34.80 0.9844 2.55 28.63 0.9568 6.64 25.29 0.9211 11.69

\ H2I € (0.3,0.4] H2I € (0.4,0.5] H2I € (0.5,0.6]
| PSNR(D) SSIM() ~ FID()) | PSNR(1) SSIM(1) FID() | PSNR(1) SSIM(1) FID()

MAT [5] 21.68 0.8746 16.31 19.80 0.8271 21.29 17.16 0.7547 29.46
CMT (Proposed) ‘ 23.14 0.8832 15.79 21.39 0.8406 20.88 19.01 0.7775 29.19

| |
| |

HiFill [5] ‘ 1968 08076 4223 ‘ 1795 0742 6420 ‘ 1585 06565  98.68
| |
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S-3. More qualitative comparisons

Figures S-2 to S-6 compare qualitative results of the proposed CMT algorithm with those of conventional algorithms.
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Figure S-2: Qualitative comparison of inpainted images on the Places2 dataset [10].
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Figure S-3: Qualitative comparison of inpainted images on the Places2 dataset [10].
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Figure S-4: Qualitative comparison of inpainted images on the CelebA-HQ dataset [3].
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Figure S-5: Qualitative comparison of inpainted images on the DTD dataset [1].
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Figure S-6: Qualitative comparison of inpainted images on the DTD dataset [1].
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