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Abstract—A novel light field super-resolution algorithm to
improve the spatial and angular resolutions of light field images
is proposed in this work. We develop spatial and angular super-
resolution (SR) networks, which can faithfully interpolate images
in the spatial and angular domains regardless of the angular
coordinates. For each input image, we feed adjacent images into
the SR networks to extract multi-view features using a trainable
disparity estimator. We concatenate the multi-view features and
remix them through the proposed adaptive feature remixing
(AFR) module, which performs channel-wise pooling. Finally,
the remixed feature is used to augment the spatial or angular
resolution. Experimental results demonstrate that the proposed
algorithm outperforms the state-of-the-art algorithms on various
light field datasets. The source codes and pre-trained models are
available at https://github.com/keunsoo-ko/LFSR-AFR

Index Terms—Light field, super-resolution, feature remixing,
convolutional neural network (CNN).

I. INTRODUCTION

ALIGHT field (LF) records the intensity and direction
of light rays, which are reflected from objects in 3D

environments. Unlike the conventional imaging that records
the 2D projection of light rays, LF imaging captures high
dimensional data [1]. From the high dimensional data, we can
extract spatial and angular information of light rays, and thus
can reconstruct multi-view images of a scene. This rich visual
information in LF images can facilitate many image processing
and computer vision tasks [2]–[5].

However, acquiring LF data with plenoptic cameras, such as
Lytro [6] and Raytrix [7], suffers from the trade-off between
spatial and angular resolutions. Due to a limited sensor reso-
lution, a plenoptic camera should lower the spatial resolution
of each view to capture more views with a higher angular
sampling rate, or vice versa. Low-resolution images lead to
performance degradation of LF vision applications. It is hence
necessary to enhance the resolutions of LF images. This paper
addresses the problem of LF super-resolution (LFSR).

Multi-view images in LF are highly correlated to one
another. Hence, sub-pixel information in each view image can
be estimated by exploiting this cross-view correlation, thereby
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enabling its super-resolution (SR) reconstruction. LFSR al-
gorithms predict sub-pixel information using the disparity
between neighboring views [8]–[11]. Recently, many deep
learning algorithms with different network architectures [12]–
[17] have been developed to achieve LFSR using large LF
datasets [18]–[20]. These algorithms yield reliable SR results
by utilizing the cross-view correlation through convolutional
neural networks (CNNs). However, since the number of adja-
cent images, required to super-resolve a view, varies according
to the angular coordinates of the view, some algorithms [12],
[16] should train several networks separately.

In this paper, we propose two networks to achieve spatial
and angular SR based on adaptive feature remixing (AFR),
which yield high quality super-resolved images regardless of
the angular coordinates of input view images. The proposed
spatial and angular SR networks take multi-view images to
enhance the spatial resolution and expand the angular res-
olution, respectively. We first extract disparity-compensated
multi-view features using a trainable disparity estimator and
concatenate the multi-view features. Next, we use the proposed
AFR module to perform channel-wise pooling and remix the
concatenated feature according to the angular coordinates of
the input view image. Finally, the remixed feature is used to
yield a super-resolved image. More specifically, when enhanc-
ing the spatial resolution, an up-sample scheme generates the
high-resolution image using the remixed feature. On the other
hand, when augmenting the number of views in the angular
domain, the remixed feature is adopted to produce blending
filters. Then, reference images are superposed by the blending
filters to reconstruct augmented view images. Experimental
results demonstrate that the proposed spatial and angular SR
networks outperform the state-of-the-art algorithms on various
LF datasets [18]–[21].

To summarize, this work has three main contributions.
• We develop the spatio-angular SR algorithm that im-

proves the spatial and angular resolutions of low-
resolution LF images.

• We propose the AFR scheme, which enables to super-
resolve input views regardless of their angular coordinates
using a single network.

• The proposed algorithm provides remarkable perfor-
mances of spatial and angular SR on the LF datasets in
[18]–[21].

II. RELATED WORK

Single-image SR: Extensive researches have been carried out
to perform single-image SR, including elementary interpola-
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Fig. 1: Overview of the proposed algorithm. In (a), an LF consists of 4× 4 view images. To increase the spatial resolution of
each image Iu, the spatial SR network takes the 3 × 3 images around Iu as input. In (b), the angular SR network processes
2× 2 input images to reconstruct 5 intermediate images, resulting in 3× 3 images. For both SR, some adjacent views may be
unavailable. In such cases, virtual images are used instead, whose all pixel values are zeros.

tion [22], [23], self-similarity [24], [25] and dictionary learn-
ing [26], [27] methods. Motivated by the success of CNNs,
Dong et al. [28] first introduced a CNN-based SR algorithm
using a shallow network. Many deeper CNN structures have
been proposed to improve the SR performance [29]–[35].

LFSR: The objective of LFSR is to improve the resolu-
tions of multi-view images, recorded at low-resolutions. To
restore sub-pixel information in multi-view images, disparity
vectors between neighboring view images are estimated [8]–
[11]. Bishop and Favaro [8] reconstructed a depth map from
disparity vectors and used the depth information to estimate a
space-varying point spread function for SR. Mitra and Veer-
araghavan [9] designed Gaussian mixture models (GMMs)
for LF patches using disparity vectors and reconstructed
high-resolution patches based on the GMMs. Wanner and
Goldluecke [10] obtained dense disparity maps for LFSR, by
analyzing the structure tensor of epipolar plane images. Rossi
and Frossard [11] proposed a global optimization method,
which forms a warping matrix based on coarse disparities,
to achieve LFSR.

There is also the data-driven approach that learns the
mapping between low and high-resolution LF images. Far-
rugia et al. [36] learned a subspace to obtain high-resolution
images based on multivariate ridge regression. Yoon et al. [12]
presented an early deep learning scheme for LFSR. Fan et
al. [13] applied the single-image SR algorithm in [29] to each
view image separately and then improved the qualities of the
separate high-resolution images using the multi-patch fusion
CNN. Gul and Gunturk [14] used raw LF data directly as the
input to CNNs to enhance the spatial and angular resolutions.
Wang et al. [15] developed the bidirectional recurrent CNN to
generate horizontally and vertically up-sampled image stacks
and combined them via stacked generalization. Zhang et
al. [16] stacked CNN features of multiple view images to
exploit residual information between neighboring views and to
generate LFSR results. Yeung et al. [37] proposed the spatial-
angular separable convolution layer to process all views of an
LF simultaneously. They improved the processing speed by
approximating the 4D convolution layer with 2D convolution

layers. Farrugia et al. [17] employed optical flow to align
LF images and reduced the angular dimension using low-rank
approximation. Then, they trained an embedding space using
the low-rank model to reconstruct SR images.

III. PROPOSED ALGORITHM

We adopt the 4D LF representation in [38]. Specifically, we
represent an LF by a four-dimensional three-channel signal

L(u, v, x, y) ∈ R3, (1)

which is defined on the domain NU × NV × NW × NH
and yields color coordinates, such as RGB values, for each
(u, v, x, y) in the domain. Here, Nk , {1, 2, . . . , k}. Also,
(u, v) and (x, y) are angular and spatial coordinates, respec-
tively. Thus, there are U × V view images and the spatial
resolution of each image is W ×H . While fixing the angular
resolution, we attempt to reconstruct a higher spatial resolution
signal

LHR
S (u, v, x, y) ∈ R3, (2)

defined on NU × NV × NrsW × NrsH . Here, rs is a scale
factor for the spatial resolution. On the other hand, while fixing
the spatial resolution, we try to reconstruct a higher angular
resolution signal

LHR
A (u, v, x, y) ∈ R3, (3)

defined on NraU × NraV × NW × NH . Here, ra is a scale
factor for the angular resolution.

As done in [15], [16], [37], we convert RGB images
into the YCbCr color space and focus on super-resolving Y
images only. Cb and Cr images are simply up-sampled by
the bicubic interpolation. Let Iu be the Y image of the u-
th view image in L, where u , (u, v). Fig. 1(a) shows an
overview of the proposed spatial SR network, which processes
{Iu} ∈ L to yield {IHR

u } ∈ LHR
S . Also, Fig. 1(b) illustrates

the proposed angular SR network, which super-resolves the
angular resolution from 2 × 2 to 3 × 3 view images. Let
us describe the proposed spatial and angular SR networks
subsequently.
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Fig. 2: (a) 5× 5 view images, which are divided into nine cases, (b) disparity estimator, (c) spatial SR generator, (d) spatial
SR for the middle case, and (e) spatial SR for the top-left case.

A. Spatial SR Network

Fig. 2 shows the architecture of the spatial SR network that
performs three steps: multi-view feature extraction, AFR, and
upsampling.

Multi-view feature extraction: We enhance the spatial reso-
lution of each view image Iu, u ∈ NU × NV , by exploiting
the information in the 8-adjacent view images in the angular
domain. For simpler notations, let Iu = {Ii}9i=1 denote the
set of 3×3 images, composed of Iu and its 8-adjacent images.
They are indexed from top-left to bottom-right, as illustrated
in Fig. 1(a). Thus, I5 = Iu is the image to be super-resolved.
Also, for example, I2 and I4 are the top and left images of
I5, respectively. We also consider the cases that some adjacent
images are unavailable. These cases occur when u is on the
boundary of the angular domain NU × NV . We fill in those
missing images with virtual images, whose all pixel values are
zeros.

The adjacent images in Iu contain sub-pixel information
for the central image I5 with different offsets. Each adjacent
image has different sub-pixel shifts according to its angular
coordinates. For example, for I5, the left and right images (I4
and I6) have sub-pixel information in the horizontal direction,

while the top and bottom images (I2 and I8) do in the
vertical one. Therefore, to exploit the sub-pixel information,
we extract multi-view features by feeding all nine images to
different network branches in Fig. 2(d). Then, we warp the
extracted feature of each adjacent image Ii, i 6= 5, to match
the central image I5. For the warping, we estimate sub-pixel
offsets between I5 and Ii using a single disparity estimator in
Fig. 2(b). Those sub-pixel offsets are called the disparities.

We design the disparity estimator in Fig. 2(b) with three
successive convolution blocks, each of which has three con-
volution layers. The output of the last convolution block is
up-sampled to be of the same size as the two images I5 and
Ii using bilinear interpolation. Let Fi and D5→i denote the
extracted feature from Ii and the disparity map from I5 to Ii,
respectively. Then, Fi can be aligned spatially to the central
view as follows:

Si =W(Fi,D5→i) (4)

where W is the backward warping function based on bilinear
interpolation. Thus, Si is the aligned feature of Ii. It has
C = 32 channels with width W and height H . Then,
we concatenate the spatially aligned multi-view features into
S = S1 ‖ S2 ‖ · · · ‖ S9, where ‖ denotes the concatenation
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(a) (b)

Fig. 3: Examples of the AFR processes (a) for the top-left (TL) case and (b) for the top (T) case, respectively, in which
different trainable matrices WTL and WT are used. Red arrows depict view-specific constraints.

along the channel dimension. Thus, S has 9C channels with
the spatial resolution W ×H .

The proposed disparity estimator is trained within the
spatial SR network in an end-to-end manner. Therefore, it
estimates disparities that are tailored for SR, and the estimated
disparities convey sub-pixel features to the central image
effectively. To reduce the overall complexity, the disparity
estimator is designed to have a much simpler structure than
the conventional optical flow networks [39], [40]. Also, note
that disparities for all views are estimated using the single
disparity estimator.

AFR: Suppose that the central image I5 is located on the
boundary of LF, e.g. the top-left corner in Fig. 2(a). Then,
some network branches for adjacent images take zero images
as input. The features of those images contain dummy values.
For this reason, the conventional algorithms [12], [16] train a
different network according to the location of I5 separately.
However, this approach is inefficient in terms of both memory
and computations.

To overcome this problem, instead of the separate training,
we remix the concatenated feature S adaptively according to
the location of I5 based on the channel-wise pooling. For
efficient remixing, we enforce view-specific constraints, which
allow each multi-view feature Si to affect Sj only when
Ii and Ij are 8-adjacent. For example, Fig. 3 illustrates the
AFR processes for (a) the top-left case and (b) the top case,
respectively. In both cases, for instance, S1 is remixed with
the features S2, S4, and S5 of the three adjacent images only.

More specifically, we remix the feature S to obtain a new
feature S̃. Let s and s̃ denote the feature vectors, taken out
from S and S̃ at a spatial position (x, y). Both s and s̃ are
column vectors in R9C . Then, the feature remixing can be
expressed as a matrix multiplication,

s̃ = (W ⊗C)s (5)

where ⊗ denotes the element-wise multiplication, and W is a
trainable matrix of size 9C × 9C. Also, C is a binary matrix

of size 9C × 9C, which enforces the aforementioned view-
specific constraints. Let us define an indexing function

η(i) = di/Ce (6)

where d·e is the ceiling function. Then, the ith element in s is
a feature extracted from Iη(i). Let cij be the (i, j)th element in
matrix C. The view-specific constraints are enforced by setting
cij to 1 when Iη(i) and Iη(j) are adjacent, and 0 otherwise. The
feature remixing in (5) is performed for all spatial positions
(x, y) in NW × NH . Consequently, we obtain the remixed
feature S̃.

The remixing matrix M , W ⊗ C in (5) is trained
separately for the nine cases in Fig. 2(a). For example, as in
Fig. 3, different matrices WTL and WT are trained for the top-
left case and for the top case, respectively. But, the proposed
algorithm needs to train only one spatial SR generator in
Fig. 2(c), regardless of the location of the central image I5.
In the test phase, we simply change the remixing matrix M,
instead of the entire SR network, according to the location of
I5. In this way, the proposed algorithm can save the memory
for network parameters and reduce the training time.

Upsampling: The spatial SR generator in Fig. 2(c) processes
the remixed feature S̃ to produce a high-resolution version
ĨHR
5 of the central image I5. The generator consists of two

convolution layers, two dense blocks [41], three convolution
layers, one pixel-shuffle layer [30], and two convolution layers.
The first two convolution layers reduce the channel dimension
of S̃ from 9C to C. The pixel-shuffle layer increases the spatial
resolution from W ×H to rsW × rsH .

Learning: We train the spatial SR network by minimizing a
loss function

L = LS + 0.01LW + 0.01LD (7)

where LS is the mean squared error between a spatial SR result
ÎHR
u and its ground-truth IHR

u . The warping loss LW improves
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Fig. 4: (a) Generating five intermediate images between four LF images, (b) three cases for the angular SR, and (c) the blending
filter generator, (d) the angular SR in the cross case, and (e) the angular SR in the vertical case.

the accuracy of the disparity estimation, by penalizing the error
between the central image with warped adjacent images;

LW =
1

8

9∑
i=1,i6=5

‖I5 −W(Ii,D5→i)‖1 . (8)

The disparity smoothness loss LD constrains neighboring
pixels to have similar disparities;

LD =
1

8

9∑
i=1,i6=5

‖∇D5→i‖1 . (9)

Every component of the proposed network is differentiable.
Therefore, we perform the end-to-end training.

B. Angular SR Network

Fig. 4(a) illustrates how to generate five intermediate images
between four LF images to increase the angular resolution.
Let I1, I2, I3, and I4 denote those four images, as shown in
Fig. 4(b). Also, let Iû denote one of the intermediate images.
There are three cases: ‘cross,’ ‘vertical,’ and ‘horizontal.’ In
the cross case, all reference images, {Ii}4i=1, are fed into the
angular SR network, as shown in Fig. 4(d). In the vertical
case, two reference images (I1 and I3) and two zero images
are fed into the network, as in Fig. 4(e). The horizontal case is
similar to the vertical one. The angular SR network performs
multi-view feature extraction and AFR similarly to the spatial

SR network. However, it uses the blending filter generator,
instead of the spatial SR generator.

Multi-view feature extraction: We extract multi-view fea-
tures by feeding four reference images to different network
branches. Then, we warp the extracted feature of each refer-
ence image Ii to the intermediate image Iû using a disparity
map Dû→i. Since there is no image information about Iû,
we approximately estimate the disparity Dû→i using the
disparity between the two reference images Ii and Ij , which
are symmetrically located with respect to Iû. For example,
in the cross case, two pairs (I1, I4) and (I2, I3) are used to
approximate the disparity information. Specifically, Dû→i is
approximated by

Dû→i = 0.5Dj→i. (10)

Then, we obtain spatially aligned features by warping the
extracted features with the approximated disparities and then
concatenate the aligned features. Note that the angular SR
network uses the same disparity estimator (with the same
parameters) as the spatial SR network does.

AFR: To handle all three cases in Fig. 4(b) using the single
angular SR network, we adopt AFR with the remixing matrices
of size 4C × 4C. By varying the remixing matrix according
to an angular position, we obtain the remixed feature for the
corresponding intermediate image.
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TABLE I: Comparison of the proposed algorithm with the conventional algorithms in terms of PSNR/SSIM scores for scale
factor ×2 and for all view images. The best results are boldfaced, and the second best ones are underlined.

Datasets

HCI [18] HCI2 [20] EPFL [19] Bikes [21] Occlusions [21] Reflective [21]

Bicubic 35.23/0.930 31.67/0.882 31.23/0.886 29.76/0.901 33.60/0.927 36.94/0.950
LFNet [15] 36.46/0.964 33.63/0.932 32.70/0.935 31.92/0.950 35.92/0.963 38.80/0.971
EDSR [31] 39.24/0.966 35.07/0.949 33.94/0.947 33.86/0.964 37.61/0.969 40.64/0.976
SOF-VSR [42] 39.12/0.959 34.75/0.932 34.61/0.934 33.52/0.951 37.64/0.962 40.49/0.969
ResLF [16] 41.09/0.988 36.45/0.979 35.48/0.973 35.21/0.981 39.71/0.988 42.32/0.990

Proposed 42.06/0.989 37.27/0.980 37.21/0.977 36.00/0.982 40.24/0.988 42.77/0.991

TABLE II: Comparison of the proposed algorithm with the conventional algorithms in terms of PSNR/SSIM scores for scale
factor ×4 and for central view images.

Datasets

HCI [18] HCI2 [20] EPFL [19] Bikes [21] Occlusions [21] Reflective [21]

RCAN [43] 34.10/0.883 30.29/0.810 28.45/0.799 27.65/0.833 31.41/0.868 35.36/0.916
SRFBN [35] 34.09/0.883 29.92/0.809 28.71/0.800 27.64/0.832 31.42/0.868 35.38/0.917
SOF-VSR [42] 32.78/0.863 28.86/0.782 29.32/0.794 26.66/0.801 30.45/0.849 34.09/0.905
ResLF [16] 34.40/0.951 30.25/0.913 27.89/0.895 27.61/0.906 32.00/0.943 35.41/0.963

Proposed 34.98/0.956 31.45/0.926 31.48/0.916 29.36/0.919 33.33/0.948 36.69/0.965

Blending: We reconstruct each intermediate image Iû, by
superposing warped reference images {IWi }4i=1 with blending
filters, where

IWi =W(Ii,Dû→i). (11)

Using the remixed feature, the blending filter generator in
Fig. 4(c) yields a feature of size H×W×36. Then, the feature
is split into 3×3×4 data for each pixel position (x, y), denoted
by Bx,y ∈ R3×3×4. We use Bx,y as the dynamic blending
filter [44]. More specifically, we reconstruct the intermediate
image by

Ĩû(x, y) =

4∑
i=1

1∑
m=−1

1∑
n=−1

Bx,y(m,n, i)I
W
i (x+m, y + n).

(12)
Thus, by generating the filter coefficients dynamically, we
blend local information in the four warped images effectively
and yield a faithfully reconstructed image.

Learning: We use the same disparity estimator, trained for
the spatial SR network. We train the other parts of the angular
SR network, by minimizing the mean square error between an
estimated result Ĩû and the ground-truth Iû.

C. Implementation Details

In each convolution layer, we perform zero padding, and
use the leaky rectified linear unit [45] with the slope of 0.2
for negative input as the activation function. We use the Adam
optimizer [46] with a learning rate of 10−4. The training is
iterated for 1,200,000 batches, each of which includes two
sets. For spatial SR, a set consists of 3 × 3 view images.
For angular SR, it consists of 2× 2 images. We describe the
network architecture in detail in the Appendix A.

IV. EXPERIMENTAL RESULTS

We first compare the proposed spatial SR network with con-
ventional algorithms, including the state-of-the-arts [16], [37].
Second, we assess the proposed angular SR network. Third,
we evaluate the performance of joint spatial and angular SR.
Fourth, we conduct ablation studies to analyze the proposed
networks. Finally, we test the proposed spatial SR network in
real applications. For quantitative assessment, we employ the
PSNR and SSIM metrics.

A. Assessment for Spatial SR

We train the proposed network in two different settings for
fair comparisons with Zhang et al. [16] and Yeung et al. [37],
which use different datasets to train their networks.

Comparison with ResLF [16]: For this comparison, we
adopt the same training and test sets as [16], which were
collected from the synthetic datasets [18], [20] and the real-
world datasets [19], [21]. The training and test sets contain 246
and 46 LF images, respectively. All LF images are cropped to
the center 9× 9 view images. We generate low-resolution LF
images using the bicubic interpolation as specified in [16]. The
low-resolution images are super-resolved, and the PSNR/SSIM
scores of the super-resolved images are computed against the
original (or ground-truth) high-resolution images.

Tables I and II compare the proposed spatial SR network
with the conventional LFSR algorithms (LFNet [15] and
ResLF [16]), the video SR algorithm (SOF-VSR [42]), and
the single-image SR algorithms (EDSR [31], RCAN [43],
and SRFBN [35]). The scores are the mean PSNR/SSIM. In
Table I, the scores of the conventional algorithms, excluding
SOF-VSR, are from [16]. They are the results for all 9 × 9
view images. In Table II, the scores are obtained from central
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Fig. 5: Qualitative comparison of the proposed spatial SR network with the conventional EDSR [31] and ResLF [16] for scale
factor ×2.

TABLE III: Comparison of the proposed algorithm with the conventional LFSR algorithms in terms of PSNR/SSIM scores for
scale factors ×2 and ×4.

Scale Bicubic LFCNN [12] RR [36] GB [11] LFSSR-SAS [37] LFSSR-4D [37] Proposed

rs = 2 34.63/0.935 35.51/0.945 34.18/0.927 35.32/0.944 40.37/0.977 40.67/0.978 41.26/0.988
rs = 4 29.41/0.813 30.06/0.828 29.73/0.823 29.99/0.832 33.59/0.910 34.27/0.920 34.57/0.953

view images using the source code provided by the authors of
each algorithm, because ResLF [16] only provides the model
trained for central view images and scale factor ×4.

We see that the proposed algorithm outperforms the state-
of-the-art ResLF significantly on all datasets. Fig. 5 and Fig. 6
compare qualitative spatial SR results for scale factor ×2 and
×4, respectively. The proposed algorithm generates less arti-
facts and provides more faithful images than EDSR, SRFBN,
and ResLF do. Note that the proposed algorithm yields high-
quality SR results even for the complicated patterns within the
red squares.

Comparison with LFSSR [37]: In this test, we use the same
dataset and training strategy as in [37]. More specifically, the
training and test sets contain 130 and 57 LF images from the
Stanford data [21], respectively. The dimension of these LF
images is 541 × 376 × 8 × 8. Only Y color components are
used. For generating low-resolution LF images, the images are
spatially blurred and then decimated by scale factor rs.

We compare the proposed algorithm with the conventional
algorithms [11], [12], [36], [37] at two scale factors (×2 and
×4). Table III reports the average PSNR and SSIM scores
over all 8 × 8 view images for all scenes. The scores of
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Fig. 6: Qualitative comparison of the proposed spatial SR network with the conventional SRFBN [35] and ResLF [16] for
scale factor ×4.

the conventional algorithms are from [37]. LFSSR has two
versions: 1) 4D and 2) SAS. Specifically, LFSSR proposes
the 4D LFSR network (4D) based on 4D convolution. Then, it
reduces the running time by approximating the 4D convolution
with 2D convolution, which is called SAS. Notice that the
proposed algorithm outperforms both versions, as well as the
other conventional algorithms.

Parameters and runtimes: Table IV lists the numbers of
parameters and the runtimes of the proposed algorithm and
the state-of-the-arts [16], [37]. ResLF [16] uses a large num-
ber of parameters, since it includes several networks trained
separately according to the angular coordinates. The proposed
algorithm achieves the second best performances in terms of
both memory and computational complexities. From Tables III
and IV, we observe that the proposed algorithm is slower than
SAS but outperforms it with meaningful margins bigger than

TABLE IV: Comparison of parameter numbers and execution
times. Here, we super-resolve 188 × 270 × 8 × 8 LF data to
376× 540× 8× 8. The execution times are measured with a
1080 Ti GPU.

ResLF [16] 4D [37] SAS [37] Proposed

Parameter/runtime 8.0M/2.71s 3.4M/12.1s 0.8M/1.45s 1.6M/2.45s

1dB. Also, note that the proposed algorithm outperforms 4D
in terms of both speed and performance.

B. Assessment for Angular SR

We evaluate the proposed angular SR algorithm with [3],
[47], [48] in Table V. For this comparison, we reduce the
angular resolution from 9 × 9 to 3 × 3. To reconstruct 9 ×
9 view images, we employ the network twice. Specifically,
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Fig. 7: Qualitative comparison of the proposed angular SR network with the conventional algorithms [12], [14] on the real-world
images ‘General 39’ and ‘Rock.’

TABLE V: Comparison of the proposed algorithm with the
angular SR algorithms [3], [47], [48] in terms of PSNR scores
for the task of 3× 3→ 9× 9. The best results are boldfaced.

Buddha Mona Average

Kalantari et al. [47] 43.20 44.37 43.79
Wu et al. [3] 42.73 42.42 42.58
Wing et al. [48] 43.77 45.67 44.72

Proposed 44.38 47.74 46.06

we reconstruct the 5 × 5 view images from 3 × 3 ones with
the proposed algorithm and then, reconstruct the 9 × 9 view
images from the reconstructed 5×5 ones. For training, we use
the same training set as [48]. The scores of the conventional
algorithm are from [48]. We see that the proposed algorithm
outperforms the state-of-the-art [48] significantly on both the
‘Buddha’ and ‘Mona’ scenes in the HCI dataset [18].

Table VI compares the proposed angular SR algorithm with

the state-of-the-arts algorithms, LFCNN [12] and the Gul and
Gunturk’s algorithm [14]. The test scenes in [16] are used
for this comparison. For the proposed algorithm and LFCNN,
we reduce the angular resolution of an original LF image
from 9 × 9 to 5 × 5 by removing even columns and even
rows. Then, we reconstruct the 9× 9 views from the reduced
LF image. We implemented LFCNN for comparison, since
its source codes are unavailable. For a fair comparison, we
implemented it to have a similar number of parameters to the
proposed algorithm. For training, we use the same training
set as [16]. The implementation details for this reproduced
LFCNN are available in the Appendix B. The Gul and Gun-
turk’s algorithm [14] is designed to take 7 × 7 view images
to produce 14 × 14 images. Thus, we reconstruct 14 × 14
view images using the source code provided by [14], and then
crop 9×9 images from the results for the comparison. Notice
that [14] cannot provide angular SR results on HCI, HCI2,
and EPFL, since it does not support the angular resolutions in
these datasets. In Table VI, we see that the proposed algorithm
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TABLE VI: Comparison of the proposed algorithm with the reproduced LFCNN and the Gul and Gunturk’s algorithm in terms
of PSNR/SSIM scores for the angular SR. The best results are boldfaced.

Datasets

HCI [18] HCI2 [20] EPFL [19] Bikes [21] Occlusions [21] Reflective [21]

LFCNN [12] 40.32/0.975 35.85/0.938 40.69/0.994 36.96/0.986 38.15/0.983 42.92/0.990

Gul and Gunturk [14] - - - 39.16/0.987 41.15/0.980 43.95/0.981

Proposed 45.36/0.993 39.35/0.980 43.40/0.999 39.99/0.994 42.64/0.993 45.59/0.995

TABLE VII: Quantitative assessment for joint spatial and angular SR. For each test, PSNR/SSIM scores are reported.

Methods
PSNR

Buddha Mona

Min Avg Max Min Avg Max

Mitra and Veeraraghavan [9] 22.61/0.611 26.76/0.776 32.37/0.913 24.36/0.633 28.11/0.773 34.53/0.956
Wanner and Goldluecke [49] 21.77/0.525 25.50/0.650 33.83/0.911 25.46/0.598 29.62/0.743 36.84/0.944

Bicubic 34.22/0.925 34.63/0.933 35.14/0.947 34.10/0.948 34.20/0.950 34.25/0.951
Spatial (Bicubic)→Angular (LFCNN) 35.68/0.928 35.79/0.929 35.87/0.930 35.80/0.936 35.91/0.936 35.99/0.937
Spatial (Bicubic)→Angular (Proposed) 36.53/0.969 37.19/0.973 37.78/0.976 37.16/0.978 37.49/0.980 37.73/0.981

Angular (LFCNN)→Spatial (LFCNN) 36.54/0.955 36.64/0.956 36.71/0.957 37.10/0.966 37.20/0.966 37.28/0.966
Angular (Proposed)→Spatial (Proposed) 38.41/0.978 40.17/0.986 41.23/0.989 42.63/0.992 43.11/0.993 43.50/0.993

Spatial (LFCNN)→Angular (LFCNN) 35.76/0.947 35.87/0.948 35.93/0.948 36.25/0.958 36.33/0.958 36.39/0.958
Spatial (Proposed)→Angular (Proposed) 38.19/0.978 39.69/0.984 40.80/0.989 42.55/0.992 43.55/0.994 44.26/0.994

TABLE VIII: Expanded test set for ablation studies. The scenes in the boldfaced fonts are newly included, while the others
are in the original test set in [16]. The expanded test set contains 76 scenes in total.

Dataset Scenes(# scenes)

HCI (9) Buddha Horses Mona Papillon Cone Head
Medieval Elephant Watch Still Lift

HCI2 (4) Bedroom Bicycle Boxes Sideboard

EPFL (13)
Flowers Friends 5 Fountain Pool ISO Chart 12 Palais du Luxembourg
Reeds University Paved Road Color chart 1 Ankylosaurus & Diplodocus 1
Magnets 1 Vespa Fountain & Vincent 2

Stanford (50) Bikes 1-10 Occlusions 1-10 Reflective 1-10 Buildings 1-10 Cars 1-10

outperforms LFCNN and [14] with large margins.
Fig. 7 compares reconstructed intermediate images of the

proposed algorithm with those of the conventional algo-
rithms [12], [14] on the ‘General 39’ scene in the Stanford
dataset [21] and the ‘Rock’ scene in [47]. Whereas the
conventional algorithms [12], [14] produce noticeable artifacts
and blurred edges, the proposed algorithm reconstructs sharp
and clear edges. Especially, within the red square regions, the
conventional algorithms fail to reconstruct object shapes, but
the proposed algorithm yields faithful results.

C. Assessment for Joint Spatial and Angular SR

We analyze the performance of joint spatial and angular SR
in Table VII. We reduce the angular resolution from 9× 9 to
5× 5 and down-sample the spatial resolution with a factor of
2 using the bicubic interpolation. To reconstruct those 9 × 9
view images with the original spatial resolution, we can first
perform spatial SR to increase the spatial resolution of the
5 × 5 view images, and then do angular SR. Alternatively,

we can first perform angular SR and then do spatial SR. We
use the ‘Buddha’ and ‘Mona’ scenes in the HCI dataset [18]
as the test set and the remaining ten scenes as the training
set, as done in [12]. Table VII shows the minimum, average,
and maximum scores of the reconstructed 9 × 9 images in
terms of PSNR and SSIM. In Table VII, the scores of the
conventional algorithms are from [12]. We observe that the
proposed algorithm outperforms LFCNN [12] significantly in
both methods ‘Spatial→Angular’ and ‘Angular→Spatial.’

In the proposed algorithm, the two methods ‘Spatial→An-
gular’ and ‘Angular→Spatial’ yield similar scores to each
other on average. In this particular test, ‘Angular→Spatial’
performs better on ‘Buddha,’ while ‘Spatial→Angular’ on
‘Mona.’ However, ‘Spatial→Angular’ requires higher com-
putational complexity than ‘Angular→Spatial,’ because the
angular SR network in ‘Spatial→Angular’ should take super-
resolved images as input. Thus, considering their similar
performances, ‘Angular→Spatial’ is a computationally more
efficient choice between the two methods.
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TABLE IX: Ablation studies on the proposed spatial SR network: ‘w/o warping’ and ‘w/o AFR’ mean that the disparity-based
feature warping and the proposed AFR are not used, respectively.

Settings
Datasets

HCI [18] HCI2 [20] EPFL [19] Stanford [21] Average

w/o warping 41.14/0.978 36.58/0.976 36.34/0.980 39.91/0.974 39.27/0.976

w/o AFR 40.38/0.975 35.80/0.968 35.12/0.970 38.74/0.975 38.16/0.974

Proposed 42.17/0.987 37.27/0.980 38.78/0.982 40.20/0.987 40.04/0.986

TABLE X: Ablation studies on the angular SR network.

Settings I II III IV V VI VII

Output of blending filter generator Image Filter Filter Filter Filter Filter Filter
Filter size - 1× 1 3× 3 5× 5 3× 3 3× 3 3× 3
The number of input images 4 4 4 4 2 4 4
AFR X X X X X X
Disparity-based feature warping X X X X X X

PSNR 42.06 43.41 43.50 43.20 42.22 42.02 42.49

D. Ablation Studies

For more reliable ablation studies, we expand the test set
in [16]. Whereas [16] uses 46 scenes from HCI [18], [20],
EPFL [19], and Stanford [21], we select 30 more scenes from
those datasets. Thus, the expanded test set includes 76 scenes
in total. Table VIII lists these scenes.

Spatial SR: We analyze the efficacy of each component of
the proposed spatial SR network through two ablation studies.
First, we measure the performance of the spatial SR network
without the disparity-based feature warping. Second, we do
not perform AFR. Let us refer to these settings as ‘w/o
warping,’ and ‘w/o AFR.’ Table IX shows the average PSNR
and SSIM scores. Without the feature warping or remixing,
the SR performance is degraded severely. This indicates that
both the feature warping and the feature remixing are essential
components of the proposed algorithm.

Angular SR: We conduct ablation studies for the proposed
angular SR network. We test various settings. First, we make
the blending filter generator to output an intermediate image
directly, instead of the filter Bx,y for each pixel position (x, y).
Second, we vary the size of the blending filter from 1× 1 to
5×5. Third, we reduce the number of input view images from
4 to 2. When this number is 2 in the cross case, only one pair
of two symmetric view images, (I1, I4) or (I2, I3), is fed into
the network. Finally, we do not perform AFR.

Note that the proposed blending filter yields better perfor-
mance than the direct image generation and achieves the best
performance with the kernel size of 3 × 3. Also, the usage
of 4 input images provides better performance than that of 2
images. This indicates that a more faithful intermediate image
is reconstructed using 4 input images in the cross case. Finally,
we can see that AFR significantly improves the angular SR
performance.

Disparity estimator: We analyze the effectiveness of the
proposed disparity estimator. To this end, we train the spatial

TABLE XI: Comparison of the proposed disparity estimator
with FlowNet-S [39] in terms of the number of parameters
and PSNR scores.

Parameters HCI [18] HCI2 [20] EPFL [19]

FlowNet-S 38,662,992 42.23 37.31 38.79
Proposed 119,266 42.17 37.27 38.78

SR network in an end-to-end manner, after replacing the
proposed disparity estimator with a more sophisticated optical
flow estimator, FlowNet-S in [39]. Table XI compares the
results. We see that the proposed disparity estimator requires
much fewer parameters than FlowNet-S does, at the cost of
slightly lower PSNR scores.

Efficacy of AFR: We investigate the impacts of the proposed
AFR in detail. For comparison, without using AFR, we train
12 networks separately: 9 for the nine cases in spatial SR in
Fig. 2(a) and 3 for the three cases in Fig. 4(b) in angular
SR. These multiple networks are compared with the proposed
spatial and angular SR networks. For a fair comparison, we
train all networks for the same number of epochs. Table XII
compares the mean PSNR/SSIM scores. While the proposed
networks yield slightly lower scores than the multiple networks
in many cases, the proposed networks are also slightly better
in some cases; both approaches are comparable in terms
of SR performance. However, the proposed AFR reduces
training time and saves the memory for network parameters
significantly.

E. Real Applications

We test the proposed algorithm on actual images captured
by a multi-view camera in Fig. 8. In this test, we obtain 25
view images of size 640×480 using a 5×5 view camera, and
then super-resolve the central view image with scale factor ×3.
It is observed that the proposed spatial SR network provides
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TABLE XII: Unlike the proposed networks using AFR, multiple networks are trained separately according to the angular
coordinates of view images. Their SR results are compared with those of the proposed networks. In each case, the higher score
is underlined.

Cases Network type
Datasets

HCI [18] HCI2 [20] EPFL [19] Stanford [21] Average

Spatial SR network

Top-left Multiple networks 41.17/0.984 36.73/0.977 38.28/0.979 39.35/0.985 39.27/0.983
Proposed network 40.98/0.984 36.27/0.976 38.36/0.979 38.62/0.983 38.73/0.982

Top Multiple networks 41.96/0.987 37.33/0.979 38.89/0.981 40.14/0.988 39.99/0.986
Proposed network 41.68/0.986 37.06/0.979 38.64/0.981 40.28/0.988 39.99/0.986

Top-right Multiple networks 41.20/0.984 36.77/0.977 38.21/0.980 39.97/0.987 39.65/0.985
Proposed network 41.00/0.984 36.38/0.976 38.43/0.980 39.98/0.987 39.65/0.985

Left Multiple networks 42.02/0.986 37.25/0.980 38.83/0.982 40.15/0.988 39.99/0.986
Proposed network 41.92/0.986 36.92/0.979 38.52/0.981 39.99/0.988 39.80/0.986

Middle Multiple networks 42.51/0.988 37.58/0.982 39.20/0.983 40.50/0.987 40.36/0.986
Proposed network 42.45/0.988 37.52/0.981 38.88/0.982 40.24/0.987 40.13/0.986

Right Multiple networks 42.00/0.986 37.22/0.980 38.80/0.981 40.22/0.988 40.03/0.986
Proposed network 41.90/0.986 36.95/0.979 38.65/0.981 40.35/0.988 40.06/0.986

Bottom-left Multiple networks 41.22/0.985 36.71/0.977 38.24/0.979 39.92/0.987 39.62/0.985
Proposed network 41.08/0.984 36.30/0.976 38.47/0.980 39.81/0.987 39.55/0.985

Bottom Multiple networks 42.08/0.987 37.28/0.980 38.96/0.981 40.19/0.987 40.05/0.986
Proposed network 41.78/0.986 37.02/0.979 38.74/0.981 40.20/0.987 39.97/0.986

Bottom-right Multiple networks 41.24/0.984 36.75/0.977 38.37/0.979 40.15/0.988 39.80/0.985
Proposed network 41.16/0.984 36.30/0.976 38.50/0.980 40.18/0.988 39.81/0.985

Angular SR network

Cross Multiple networks 44.61/0.994 41.34/0.982 41.20/0.996 43.09/0.995 42.86/0.994
Proposed network 44.21/0.993 41.33/0.992 41.39/0.996 43.01/0.994 42.79/0.994

Vertical Multiple networks 45.63/0.994 41.68/0.992 44.22/0.997 44.25/0.995 44.27/0.995
Proposed network 44.89/0.991 41.55/0.992 43.85/0.997 44.07/0.995 44.00/0.995

Horizontal Multiple networks 44.02/0.990 42.31/0.993 43.18/0.997 43.77/0.995 43.62/0.995
Proposed network 44.34/0.991 42.41/0.993 42.93/0.997 43.69/0.995 43.57/0.994

Fig. 8: Comparison of super-resolved images in real applica-
tions.

more faithful results especially on the detailed patterns than
EDSR [31] does.

V. CONCLUSIONS

In this paper, we developed the LFSR algorithm based
on AFR, which yields high quality SR results regardless
of the angular coordinates of input views. The proposed
spatial and angular SR networks extract multi-view features
using the trainable disparity estimator. It then performs the
feature remixing according to the angular coordinates and
reconstructs images from the remixed features. Experimental
results demonstrated that the proposed algorithm outperforms
the state-of-the-art algorithms on various datasets.

APPENDIX A
DETAILED NETWORK ARCHITECTURE

Fig. 9 shows the detailed structures of the proposed spatial
and angular SR networks. Each convolution layer is labeled as
‘k×k, (c1, c2),’ where k is the kernel size, and c1 and c2 are the
number of input and output channels, respectively. We perform
zero padding and adopt the leaky rectified linear unit [45] with
the slope of 0.2 for negative input as the activation function
in all convolution layers.

In the spatial SR network, to extract multi-view features, we
implement each branch using two convolution layers both with
32 filters. The disparity estimator consists of three convolution
blocks. Each convolution block contains three sequential con-
volution layers. In the first two blocks, the last convolution
layers halve the spatial resolutions both horizontally and
vertically with stride 2. In the up-sampling step, there are 7
convolution layers, 2 dense blocks [41], and 1 pixel-shuffle
layer [30]. Each dense block is composed of three convolution
layers. All convolution layers in the dense blocks have 64
filters. The pixel-shuffle layer is a periodic shuffling operator
that rearranges an H×W×r2sC tensor into an rsH×rsW×C
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Fig. 9: Detailed structures of the proposed spatial and angular
SR networks.

tensor, where rs is the scale factor.
In the angular SR network, to extract multi-view features,

we implement the four branches, each of which has two
convolution layers both with 32 filters. We use the same
disparity estimator trained for the spatial SR network. For
blending, we use 7 convolution layers and 2 dense blocks [41].
The structure of these dense blocks is identical with that for
the spatial SR network.

APPENDIX B
ARCHITECTURE OF REPRODUCED LFCNN

For comparison, we reproduce the LFCNN algorithm based
on the proposed angular SR network. By comparing Fig. 10(a)
to Fig. 9(b), we see that the feature warping and AFR are
removed in the reproduced LFCNN, and the number of filters
in the last convolution layer is modified to generate inter-
mediate view images directly. Thus, it has a similar number
of parameters to the proposed angular SR network. Also,
as in [12], we train three LFCNN networks separately for
cross, vertical, and horizontal cases in Fig. 10(b). Table VI
confirms that the proposed angular SR network based on
feature warping, AFR, and blending is superior to the LFCNN
algorithm based on image stack and generation.

APPENDIX C
VISUALIZATION OF AFR.

Let us visualize the remixing matrices M for the nine cases
in Fig. 2(a). In (5), the ith element s̃i in s̃ is given by

s̃i =

9C∑
j=1

mijsj . (13)
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Fig. 10: (a) Reproduced LFCNN. (b) Three LFCNNs for cross,
vertical, and horizontal cases.
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Fig. 11: Visualization of AFR.

Note that sj is a feature from Iη(j). Let pη(j) be the angular
position of Iη(j). Then, by using |mij | as a weight, we can
compute the centroid

p̃i =
1∑9C

j=1 |mij |

9C∑
j=1

|mij | × pη(j). (14)

Fig. 11 plots these centroids p̃i for i ∈ N9C . It shows how the
centroids are shifted for each of the nine cases in Fig. 2(a). For
example, in the top-left case, I1, I2, I3, I4, I7 are zero images.
Thus, their features are suppressed in the remixing in (13)
and the corresponding mij’s tend to have small magnitudes.
Thus, in the computation of the centroids in (14), the angular
positions of I1, I2, I3, I4, I7 are multiplied by small weights,
while those of I5, I6, I8, I9 by big weights. Therefore, we see
that the centroids are shifted to the bottom and to the right.
Similarly, in the left case, the centroids are shifted to the right
so as not to use the features in I1, I4, I7. In contrast, in the
middle case, no such shifts are observed.
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