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Abstract

We propose a unified approach to three tasks of aesthetic
score regression, binary aesthetic classification, and per-
sonalized aesthetics. First, we develop a comparator to es-
timate the ratio of aesthetic scores for two images. Then, we
construct a pairwise comparison matrix for multiple refer-
ence images and an input image, and predict the aesthetic
score of the input via the eigenvalue decomposition of the
matrix. By varying the reference images, the proposed al-
gorithm can be used for binary aesthetic classification and
personalized aesthetics, as well as generic score regression.
Experimental results demonstrate that the proposed unified
algorithm provides the state-of-the-art performances in all
three tasks of image aesthetics.

1. Introduction

As the volume of visual data grows exponentially, the
capability of automatically distinguishing high quality im-
ages from low quality ones or judging aesthetic values of
images becomes increasingly important in image search-
ing, retrieving, and enhancing applications. However, it is
challenging due to the subjectiveness and ambiguity of aes-
thetic criteria. For example, to take high quality images,
photographers use several aesthetic rules, including rule of
thirds and visual balance [22, 23]. Early assessment tech-
niques [6, 27, 28, 40] adopted various handcrafted features
to describe these rules. The rule-based features, however,
are not sufficiently effective, and some aesthetic rules might
have not been discovered yet. Other approaches leveraged
generic image features, such as Fisher vectors [31, 33] and
bag-of-visual-words [38], yielding more promising results.

Recently, with the great success of convolutional neural
networks (CNNs) in various vision tasks [10,15,16,19,36],
many CNN-based aesthetic assessment techniques have
been developed [18, 25, 26, 29, 30, 39]. As human beings
evaluate aesthetics based on their experience, these CNN-
based techniques learn aesthetic criteria from massive data.
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Figure 1. Given an image, the proposed unified algorithm can clas-
sify it into either high or low quality class, regress a generic score,
and tailor the score to reflect personal preferences.

Although these techniques have made progress in aesthetic
assessment, most of them focus on dichotomizing an image
into either high or low quality class. However, in some ap-
plications, such as image recommendation, image enhance-
ment [20], and personal album curation, it is necessary to
estimate a continuous aesthetic score of an image and also
tailor the score to meet personal preferences. Relatively lit-
tle effort has been made for these aesthetic score regres-
sion [18] and personalized aesthetics [34], which are more
challenging than binary aesthetic classification.

In this paper, we propose a unified approach to the three
tasks of aesthetic score regression, binary aesthetic classi-
fication, and personalized aesthetics. We first develop an
aesthetic comparator, which is a Siamese network, to esti-
mate the ratio of aesthetic scores for two images. Using the
comparator, we generate a pairwise comparison matrix for
multiple reference images and an input image. Then, via
the eigenvalue decomposition of the matrix, we obtain a re-
gressed score of the input image. By modifying the pairwise
comparison matrix, the proposed algorithm can achieve
all three objectives of score regression, binary classifica-
tion, and personalization successfully, as illustrated in Fig-
ure 1. Experimental results demonstrate that the proposed
unified algorithm outperforms the state-of-the-art score re-
gression [18], binary classification [29], and personaliza-
tion [34] techniques.

To summarize, we make the following contributions:

• We propose the first unified approach to the three tasks
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of image aesthetic assessment.

• The proposed unified algorithm outperforms the state-
of-the-art aesthetic ranker [17], generic score regres-
sor [18], and personalized score regressor [34].

• Especially, the proposed unified algorithm yields a
9.0% higher accuracy that the state-of-the-art algo-
rithm [29] in binary aesthetic classification, which is
the most extensively studied task.

2. Related Work
2.1. CNN-Based Aesthetic Assessment

Image aesthetic assessment can be roughly divided into
two problems: binary classification and score regression.

Binary classification: It attempts to dichotomize the qual-
ity of an image into either high or low class. This binary aes-
thetic classification has been extensively studied, and there
are many CNN-based methods, including [25, 26, 29, 30].
Some methods improve the classification performance by
combining global and local information [25, 26, 29]. Lu et
al. [25] extract aesthetic features using two CNNs which ac-
cept an entire image and a randomly cropped patch, respec-
tively. The single patch input, however, may not represent
local information faithfully. Moreover, the local CNN does
not consider the holistic layout of an image. Thus, Lu et
al. [26] feed a set of randomly cropped patches into a CNN
and aggregate those features. Instead of randomly selecting
patches, Ma et al. [29] extract more informative patches us-
ing an object detector [42] and low-level information, such
as saliency and texture. However, as long as an image is
divided into small patches, the aesthetics of the global view
is not preserved. Also, Mai et al. [30] take a whole im-
age as the input to multiple CNNs, from the last layers of
which multi-scale local features are extracted. But, near the
last layers, most local details are lost, making it difficult to
perform local analysis effectively.

Score regression: Compared with binary classification,
relatively little effort has been made for aesthetic score re-
gression. This is partly because aesthetic regression is tech-
nically more challenging than aesthetic classification. How-
ever, score regression is also important in applications. Sup-
pose that a retrieval system should retrieve the top 10% im-
ages in terms of aesthetic qualities from a database. In this
case, a binary classification algorithm would be of little use.
In contrast, with a regression algorithm, it is straightforward
to sort the images according to their aesthetic scores.

Kong et al. [18] proposed a CNN to regress the aesthetic
score of an image. To train the CNN, they employed a
Siamese network with a pairwise ranking loss. They also
developed additional networks to extract attribute and con-
tent information. Ko et al. [17] also proposed a Siamese

network, which compares two images and determines the
aesthetically better one. However, their algorithm is not a
score regressor but a ranker: it does not provide the score
of an image and can only rank n images by performing

(
n
2

)
comparisons. Recently, Talebi and Milanfar [39] attempted
to estimate the distribution of aesthetic scores for an image
to address the subjective nature of aesthetics.

Since aesthetic assessment is inherently a subjective pro-
cess, it is important to adapt an assessment algorithm to per-
sonal preferences. This personalization is challenging, as
noted in [5]. Ren et al. [34] proposed a regression method
which predicts the personalized aesthetic score of an image
by adding a user-specific offset to the generic score.

2.2. Pairwise Comparison

It is a fundamental problem to estimate the priorities (or
ranks) of multiple entities through pairwise comparison of
those entities [1,17,35,37]. For example, in a sports league,
teams compete against each other in a pairwise manner, and
their ranks are determined according to their numbers of
wins. In the classic paper [35], Saaty proposed the scaling
method, which can reconstruct absolute priorities up to a
scale using only pairwise relative priorities.

In information retrieval, pairwise comparison of train-
ing data can be performed to learn a rank function, which
measures the relevance of a data item to a query. For in-
stance, Herbrich et al. [13] developed an ordinal regression
function, called Ranking SVM, to minimize pairwise rank
inversion cases. Burges et al. [3] proposed RankNet to di-
chotomize the ordinal relation of a pair of relevance scores
into binary classes.

Pairwise comparison is widely used in computer vision
as well. Wang et al. [41] trained a network for person re-
identification, which outputs a high similarity level if two
images contain an identical person. Chen et al. [4] trained
a monocular depth estimation algorithm, by employing dif-
ferent loss functions depending on the ordinal relation be-
tween a pair of pixel depths. Recently, Lee and Kim [21]
reconstructed relative depths for all pairs of pixels in an im-
age and used them to achieve the state-of-the-art monoc-
ular depth estimation performance. Furthermore, pairwise
comparison is useful to learn metrics for quantifying per-
ceptual concepts, such as image interestingness [9] and ur-
ban appearance [8]. Due to the ambiguity and subjectivity
of those concepts, the annotation on individual images is
unreliable. Instead, the pairwise comparison (e.g. for de-
termining the more interesting one between two images) is
relatively easy. For the image interestingness, Fu et al. [9]
trained a linear regression function by minimizing pairwise
errors of regressed interestingness. For the urban appear-
ance, Dubey et al. [8] trained a Siamese network by classi-
fying the ordinal relation of two images and regressing their
rank difference.
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Figure 2. The aesthetic comparator: Given two images, their fea-
tures are obtained by the coupled extractors, concatenated, prop-
agated to three fully connected layers, and then categorized into
one of three classes. Then, the quantized score ratio r̂ij is output.

3. Proposed Algorithm
We propose a unified algorithm to solve the three prob-

lems of image aesthetic assessment: score regression, bi-
nary classification, and personalized aesthetics. Using an
aesthetic comparator, the proposed algorithm forms a pair-
wise comparison matrix for multiple reference images and
an input image. By decomposing the matrix, the proposed
algorithm estimates the aesthetic score of the input image.
Let us first describe the aesthetic comparator and then ex-
plain how to solve each of the three problems by construct-
ing the pairwise comparison matrix differently.

3.1. Aesthetic Comparator

The aesthetic comparator estimates the ratio of aesthetic
scores for two images. It is a Siamese network in Figure 2,
composed of twin feature extractors and a ternary classifier.

Feature extractors: Let us first describe the baseline net-
work, the truncated version of which is used for the feature
extraction. As shown in Figure 3, the baseline network it-
self is a binary aesthetic classifier to categorize an image
into either high or low quality class.

We implement the baseline network using the first five
residual blocks (res1 ∼ res5) of ResNet-50 [12]. The last
block (res5) describes global features of an image holis-
tically, while taking less account of local characteristics
of smaller regions. In aesthetic assessment, local features
are as important as global ones. To extract local features,
the conventional techniques [25, 26] use locally cropped
patches as input to their networks. However, when process-
ing visual information, brains handle local views in deeper
steps, by analyzing already deeply processed information
from the previous processing [11]. Hence, we extract local
aesthetic features from a deep layer. Specifically, we add
four local residual blocks res5-k, 1 ≤ k ≤ 4, in parallel
with res5. In Figure 3, each res5-k analyzes a quadrant of
the output of res4. To aggregate both global and local fea-
tures, the output responses of res5 and res5-1, . . . , res5-4
are average-pooled and concatenated. Subsequently, we use
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Figure 3. The baseline network contains residual blocks (res1 ∼
res4, res5, res5-l ∼ res5-4), pooling layers, fully connected layers
(fc1 and fc2), and a classification layer. It is used as the twin
feature extractor in Figure 2, after being truncated before fc2.

two fully connected layers. Finally, the classification layer
yields a softmax probability vector for the two classes. To
train the network, we use the cross-entropy loss.

We truncate the baseline network before the fc2 layer and
use it to initialize the twin feature extractors in the Siamese
network in Figure 2.

Ternary classifier: It is difficult (even for a human being)
to estimate a continuous ratio between aesthetic scores of
two images. We hence quantize the ratio into one of three
classes: the first image is aesthetically ‘superior,’ ‘similar,’
or ‘inferior’ to the second one. In other words, we design
the ternary classifier in Figure 2, which takes two feature
vectors and yields one of the three class labels. The classi-
fier consists of fully connected layers and a softmax layer.
Finer quantization, such as 5-ary or 7-ary classifier, is also
possible, but the ternary classifier is the most effective for
the proposed aesthetic assessment, as will be verified in
Section 4 and the supplemental document.

To obtain ground-truth classes, we quantize the aesthetic
score ratios of pairs of images in a training dataset. Let si
and sj denote the ground-truth aesthetic scores of images
i and j, respectively. Also, let the score ratio be rij = si

sj
.

Note that the distribution of score ratios is reciprocally sym-
metric with respect to 1. In other words, for each score ratio
rij , its reciprocal r−1ij =

sj
si

is also a score ratio. Therefore,
we quantize a continuous ratio rij into

r̂ij =

 γ if θ ≤ rij , (i is superior to j)
1 if θ−1 ≤ rij < θ, (i is similar to j)
γ−1 if rij < θ−1, (i is inferior to j)

(1)
where γ > 1 is the reconstruction level for the superior
case, and θ is the decision level.

We determine these levels γ and θ, by modifying the
Lloyd algorithm [24] to satisfy the reciprocal constraints in



(1). We first compute the reconstruction level by

γ =

∫∞
θ
rp(r)dr∫∞

θ
p(r)dr

(2)

where p(r) is the probability distribution of score ratios in a
training dataset. Second, θ is set to be the midpoint 1+γ

2 to
satisfy the nearest neighbor criterion. These two steps are
iterated until the convergence.

The entire aesthetic comparator is trained in an end-to-
end manner. In other words, the twin feature extractors are
fine-tuned and the ternary classifier is trained from scratch.
We train the aesthetic comparator with the cross-entropy
loss, given by Lc(p, p̄) = −

∑2
k=0 p̄k log pk, where p =

(p0, p1, p2) represents the estimated probabilities that an
image pair belongs to the three classes and p̄ = (p̄0, p̄1, p̄2)
is the ground-truth.

3.2. Aesthetic Score Regression

The comparator analyzes two images comparatively to
yield their score ratio. In this section, by extending the
Saaty’s scaling method for priorities [35], we propose an
aesthetic score regressor that processes pairwise compari-
son results among multiple reference images and an input
image to predict the aesthetic score of the input. Then, we
describe how to select the reference images and extract their
features in advance to perform the regression efficiently.

Score regression: To predict the score of an image, we use
R reference images in a training dataset, whose scores are
known. Using the known scores, we first construct the pair-
wise comparison matrix Aref of sizeR×R for the reference
images,

Aref =


a1/a1 a1/a2 · · · a1/aR
a2/a1 a2/a2 · · · a2/aR

...
...

...
...

aR/a1 aR/a2 · · · aR/aR

 (3)

where ai denotes the aesthetic score of ith reference image.
Thus, each element aij , ai/aj in Aref is an aesthetic score
ratio. Aref is a reciprocal matrix, since aij = 1

aji
.

Using the aesthetic comparator in Section 3.1, we esti-
mate the quantized score ratios between reference and input
images. Let b = [b1, b2, . . . , bR]T be the resultant vector,
where bi ∈ {γ−1, 1, γ} is the score ratio between the ith
reference image and the input image. Then, we form the
pairwise comparison matrix A for the reference and input
images, given by

A =

[
Aref b

b̌T 1

]
(4)

where b̌ = [b−11 , b−12 , . . . , b−1R ]T denotes the element-wise
inverse of b. Figure 4(a) is an example of the pairwise com-
parison matrix A for the score regression.

(a) (c)(b)

Figure 4. Examples of pairwise comparison matrices for (a)
generic score regression, (b) binary classification, and (c) person-
alized score regression. The ratios within green or blue boxes are
computed using known scores.

Note that A is also a reciprocal matrix, and its all ele-
ments are positive. Therefore, the priority vector u of aes-
thetic scores of the reference and input images can be ob-
tained by solving the eigenvalue problem [35],

Au = λu, (5)

where λ denotes an eigenvalue. In the ideal case that the
aesthetic score ratios in A are error-free and consistent, this
is a trivial problem since rank(A) = 1. In such a case, the
only non-zero eigenvalue is λmax = R + 1, and the corre-
sponding eigenvector is equal to any column in A. How-
ever, in practice, the score ratios in b may contain classi-
fication and quantization errors. As a result, the score ra-
tios in A may be inconsistent. Even in this noisy case, all
score ratios in A are positive. Therefore, by the Perron-
Frobenius theorem [14], the eigenvalue decomposition of A
yields a positive maximum eigenvalue λmax, whose modu-
lus exceeds all the other eigenvalues. The corresponding
eigenvector (principal eigenvector) has nonnegative entries.
It can be used as a scaled aesthetic score vector, since it is
the column vector for the best rank-1 approximation of A
in terms of the Frobenius norm [2].

Let u = [uT
ref, u]T denote the principal eigenvector,

where uref is the priority vector for the R reference images
and u is the priority of the input image. Then, we obtain the
score vector s = [sT

ref, s]
T by scaling u,

s = κu (6)

where κ is a scale factor. Note that the ground-truth scores
of the reference images are available. Let s̄ref be the ground-
truth vector. The optimal coefficient κ∗ is determined to
minimize the squared error ‖s̄ref − sref‖2 = ‖s̄ref − κuref‖2,
which is given by

κ∗ =
uT

refs̄ref

uT
refuref

. (7)

Last, we compute the aesthetic score of the input image by

s = κ∗u. (8)



Table 1. Testing times per image for the three assessment tasks.

Task R Testing time (sec)
Score regression 110 1.4× 10−2

Binary classification 30 7.3× 10−3

Personalized aesthetics 110 1.4× 10−2

Personalized aesthetics 200 2.9× 10−2

Reference image selection: For the score regression, we
use R reference images to compose the pairwise compar-
ison matrix Aref in (3). The performance of the proposed
score regression method depends on the variety of reference
images, as well as on the accuracy of pairwise comparison
between reference and test images. Hence, we select reli-
able reference images as follows. First, we select Rinit ref-
erence images from the training images, whereRinit = 200.
We attempt to make the scores of the reference images uni-
formly distributed, by dividing the entire score range into
10 equal partitions and randomly sampling 0.1Rinit train-
ing images from each partition. Next, for each reference
image, we compare it with the validation images using the
aesthetic comparator, and measure the accuracy of the pair-
wise comparison. We use it as the reliability of the reference
image. Then, at each step, we remove the five most unreli-
able images. As a result, for example, R = 110 reference
images are selected for the AVA dataset [32].

Testing time: In testing, the proposed algorithm compares
an input image with each of R reference images using the
aesthetic comparator. For efficient computing, we extract
the CNN features of those reference images in advance. In
other words, during the test, the feature extraction of the ref-
erence images is not necessary. Thus, when R = 110, the
score regression of an image takes 0.6×10−2 sec for the in-
put feature extraction, 0.3×10−2 sec for the shallow ternary
classifier, and 5.4 × 10−3 sec for the eigenvalue decom-
position using a PC with a GTX 1080 ti GPU. Therefore,
as listed in Table 1, the proposed algorithm takes merely
1.4× 10−2 sec in total to regress the score of an image.

3.3. Binary Aesthetic Classification
In binary classification, an image is declared as high

quality if its aesthetic score is higher than the median level
(e.g. 5 in the AVA dataset), and low quality otherwise.

Therefore, for binary classification, we compare an input
image to reference images with middle scores. More specif-
ically, we construct the set of reference images, by selecting
the training images whose scores are closest to the median
level. This is more desirable than using the reference im-
ages with a uniform score distribution. Then, as in (4), we
form the pairwise comparison matrix A, but all elements
in the sub-matrix Aref are close to 1, as illustrated in Fig-
ure 4(b). The remaining steps are identical to the score re-
gression. If the resultant score s is higher than the median
level smed, the image is declared to be of high quality. Oth-

erwise, it is of low quality.

3.4. Personalized Image Aesthetics

Aesthetic assessment is a subjective process. Although
people may have a collective consensus about the aes-
thetic qualities of images, their preferences differ in gen-
eral. However, it is not practical to train a personalized aes-
thetic model from scratch. It takes too much effort for a
user to provide a sufficient number of annotated examples.
Thus, we propose a personalized aesthetic score regression
algorithm, requiring only a few user-annotated images. To
this end, the personalized regression algorithm exploits the
generic preferences of people, by extending the generic re-
gression algorithm in Section 3.2.

We employ Rg generic reference images in a training
dataset, whose scores are assessed by hundreds of anno-
tators and then averaged [18], and Rp personal reference
images, scored by a single user. For practical use, we set
Rg ≥ Rp. Then, similarly to (4), we construct the overall
comparison matrix

A =

Ag Agp bg

ǍT
gp Ap bp

b̌T
g b̌T

p 1

 (9)

where Ag and Ap are the comparison matrices for the
generic and personal reference images, respectively. Agp
records the score ratio between each pair of generic and
personal reference images. Also, bg and bp, respectively,
record the relative scores of the generic and personal refer-
ence images with respect to an input image. As illustrated in
Figure 4(c), Agp, bg, and bp are computed by the aesthetic
comparator in Section 3.1.

Through the eigenvalue decomposition of A in (9), we
obtain the principal eigenvector u = [uT

g ,u
T
p , u]T, where

ug, up, and u represent the aesthetic priorities of the generic
reference images, the personal reference images, and the
input image, respectively. Then, as in (7) and (8), the input
priority u is scaled to the personalized aesthetic score by

s =
uT

g s̄g + uT
p s̄p

uT
gug + uT

pup
u (10)

where s̄g and s̄p are the ground truth score vectors of the
generic and personal reference images, respectively.

4. Experimental Results
4.1. Datasets

We assess the proposed algorithms on three dataset:
AVA [32] for binary classification and generic regres-
sion, AADB [18] for generic regression, and FLICKER-
AES [34] for personalized regression.
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(a) Regression examples on the AVA dataset
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Figure 5. Results of the proposed score regressor: ground-truth
and regressed scores are reported in blue and red, respectively.

AVA [32]: AVA is a large publicly available aesthetic as-
sessment dataset, containing about 250,000 images. We use
the same partition of training data and testing data as the
conventional algorithms [18,25,26,30,32] do: 235,599 im-
ages for training and 19,930 images for testing. Then, as
a validation set, we randomly select 2,000 images from the
training images. The aesthetic quality of each image was
rated by about 200 human annotators. Ratings range from
one to ten, with ten indicating the highest quality. The mean
rating of an image is set to be its continuous score. An im-
age is labeled as high quality when its mean rating is higher
than 5, and low quality otherwise.

AADB [18]: The aesthetics and attribute database (AADB)
is for scoring and ranking images in terms of aesthetics. It
contains 10,000 images in total, which are split into 8,500
images for training, 500 images for validation, and 1,000
images for testing. Each image was annotated with an aes-
thetic score and confidence scores for eleven attributes, av-
eraged by five annotators. Aesthetic scores range from 0 to
1 with 1 denoting the highest quality, and confidence scores
from −1 to 1, where 1 indicates that the corresponding at-
tribute is manifested to the maximum.

FLICKER-AES [34]: Raw aesthetic scores range from 1
to 5, representing the lowest to the highest aesthetic levels.
Each image was rated by about five workers and its ground
truth score was set to be the mean of their scores. 210 work-
ers participated in the annotation of FLICKER-AES, which
was split into 35,263 images for training and 4,737 images
for testing. For personalized applications, the workers of
the training images were different from those of the test im-
ages. Specifically, the training images were rated by 173
workers, and the test images by the other 37 workers. As
for the test images, each worker rated about 137 images.

4.2. Aesthetic Score Regression

We assess the performances of the proposed aesthetic
score regressor on the AVA and AADB datasets. As shown

Table 2. Comparison of the proposed regression algorithm with
Reg-Net and PAC-Net on the AVA and AADB datasets. The best
results are boldfaced.

AVA dataset AADB dataset
Methods ρ(↑) MASD(↓) ρ(↑) MASD(↓)
Reg-Net [18] 0.558 0.0582 0.678 0.1268
PAC-Net [17] 0.871 - 0.837 -
Proposed 0.918 0.0229 0.879 0.1141

in Figure 5, regressed scores are close to the ground-truth
scores in most cases.

To quantify the score regression performance, we adopt
the Spearman’s coefficient [7, 18] and the mean of abso-
lute score differences (MASD). The Spearman’s coefficient
is the correlation coefficient between the ranks, obtained
from ground-truth scores and regressed scores, respectively.
More specifically, the Spearman’s coefficient ρ is given by

ρ = 1−
6
∑
i(ri − r̂i)2

N3 −N
(11)

where N is the number of test images, and ri and r̂i are
the ground-truth and predicted ranks of the ith test im-
age. The Spearman’s coefficient measures the degree of the
monotonic relationship between two rank vectors. Hence,
it does not assess the quality of a regressed score directly.
MASD measures the differences between ground-truth and
regressed scores directly and averages them, which is de-
fined as

MASD =
1

N

∑
i

|si − ŝi| (12)

where si and ŝi are the ground-truth and regressed scores of
the ith image, normalized to the range [0, 1].

Comparative evaluation: We compare the proposed re-
gression algorithm with the conventional regression [18]
and ranking [17] algorithms. Similarly to the proposed
algorithm, given an image, the regression network Reg-
Net [18] yields its score. In contrast, the ranking algo-
rithm PAC-Net [17] does not provide a score. Note that it is
straightforward to obtain the ranks of N images from their
scores. Any sorting algorithm can be used. On the con-
trary, it is hard to estimate the aesthetic scores ofN images,
annotated by humans, from the ranks only.

Table 2 compares the results. The Spearman’s coeffi-
cients of the conventional algorithms are from the respective
papers [17, 18], and the MASDs of Reg-Net are computed
using their source codes. As mentioned above, the ranking
algorithm PAC-Net does not yield scores, so its MASD can-
not be measured. We see that the proposed algorithm per-
forms better than Reg-Net and PAC-Net on both datasets.
In terms of ρ, the proposed algorithm outperforms PAC-
Net by 0.047 and 0.042 on the AVA and AADB datasets,
respectively. Also, for MASD, the proposed algorithm out-
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Figure 6. Ternary classification results of the proposed aesthetic
comparator on the AVA dataset: images in (b), (c) and (d) are de-
clared to be superior, similar, and inferior to the reference image
in (a), respectively. The ground-truth scores of (a)∼(d) are 5.02,
6.37, 5.05, and 3.13.

Table 3. The overall aesthetic score regression performances,
when different classifiers are used in the aesthetic comparator.

AVA dataset AADB dataset
Comparator ρ(↑) MASD(↓) ρ(↑) MASD(↓)

3-ary classifier 0.918 0.0229 0.879 0.1141
5-ary classifier 0.791 0.0555 0.867 0.1713
7-ary classifier 0.779 0.0528 0.867 0.1783

performs Reg-Net by 0.0353 and 0.0127 on the AVA and
AADB datasets, respectively.

Although PAC-Net is comparable to the proposed algo-
rithm in the ρ performance, but it is not practical. It requires
the pairwise comparison between all possible pairs in the
test dataset. On the AVA dataset, the number of such pairs
is
(
19930

2

) ∼= 1.99×106, and it takes about 71 hours for test-
ing. In contrast, the proposed algorithm computes the score
of each image and obtains the ranks of all images by sorting
the scores. The proposed algorithm takes 1.4 × 10−2 sec
for computing each score and thus requires about 5 minutes
only for obtaining the rank vector of 19,930 images.

Finer quantization in aesthetic comparator: We analyze
the quantization effects of score ratios in the aesthetic com-
parator. More specifically, we design 5-ary and 7-ary clas-
sifiers, as well as the ternary classifier in Figure 2. Ta-
ble 3 shows the overall aesthetic score regression perfor-
mances, when these alternative classifiers are employed in-
stead of the ternary-classifier. We see that the proposed
ternary classifier provides the best performances in terms
of ρ and MASD on both datasets. This is because, although
the ternary classifier performs the coarsest quantization, it
is the most reliable and yields the highest classification ac-
curacy. Figure 6 shows comparison examples of the ternary
classifier.

4.3. Binary Aesthetic Classification

Binary classification is the most extensively researched
topic in image aesthetic assessment [17,18,25,26,29,30,39].
We evaluate the proposed binary classification algorithm on
the AVA dataset. Figure 7 shows how the proposed algo-
rithm classifies images into the high or low quality classes.
It uses the 30 reference images whose scores are the closest
to the median score among the training images. This num-
ber of reference images, R = 30, is sufficient for the binary

(a) High quality class

(b) Low quality class

Figure 7. Binary classification results: images in (a) are declared
by the proposed algorithm as high quality, and images in (b) as
low quality.

Table 4. Comparison of the accuracy scores of binary classifica-
tion on the AVA dataset. The best result and the second best result
are boldfaced and underlined, respectively.

Methods Accuracy (%)
AVA [32] 67.0
RDCNN [25] 74.4
DMA-Net-ImgFu [26] 75.4
Reg-Net [18] 77.3
MNA-Net-Scene [30] 77.4
PAC-Net [17] 82.2
A-Lamp [29] 82.5
Baseline network 78.7
Proposed 91.5

classification, even though it is smaller than that (= 110) for
the score regression. Thus, as listed in Table 1, the proposed
algorithm takes 7.3× 10−3 sec only to classify an image.

We measure the accuracy score

Accuracy =
Nc

N
(13)

where Nc is the number of correctly classified images and
N is the number of total test images.

Comparative evaluation: Table 4 compares the proposed
binary aesthetic classification algorithm with the recent al-
gorithms in [18, 25, 26, 29, 30, 32] on the AVA dataset.
Based on handcrafted and generic features, the AVA algo-
rithm [32] yields the lowest accuracy. The other conven-
tional algorithms are based on CNNs. Most of them exploit
external information such as attribute classification [25,26],
scene categorization [30], attribute and content classifica-
tion [18], and salient object detection [29], whereas the pro-
posed algorithm uses no such information.



(a) (0.80, 0.73, 0.76) (b) (1.00, 0.71, 0.77)

(c) (0.40, 0.42, 0.40) (d) (0.40, 0.49, 0.45)

Figure 8. Examples of the personalized score regression for a test
worker. For each image, (the worker’s annotated score, regressed
generic score, regressed personalized score) are reported, where
all scores are normalized to [0, 1].

In Table 4, we also include the performance of the pro-
posed baseline network. Even the baseline network yields a
comparable accuracy to the conventional CNN-based algo-
rithms. Furthermore, the proposed algorithm based on pair-
wise comparison improves the performance of the baseline
network by 12.8%. Consequently, notice that the proposed
algorithm outperforms the previous state-of-the-art method,
A-Lamp [29] by a significant gap of 9.0%.

4.4. Personalized Image Aesthetics

Figure 8 shows examples of the proposed personalized
score regression. In this test, 100 generic reference images
are used to form Ag, and 10 personal reference images,
annotated by a test worker, are employed to construct Ap
in (9). The personalized regression predicts the worker’s
aesthetic preferences more accurately than the generic re-
gression. For example, the generic regression determines
that Figure 8(a) is aesthetically superior to Figure 8(b). On
the contrary, the personalized regression declares that Fig-
ure 8(b) is better, coinciding with the worker’s preferences.

Comparative evaluation: We evaluate the proposed per-
sonalized score regression algorithm on the FLICKER-
AES dataset. We randomly select Rg generic reference im-
ages from the training set, where Rg = 100. For each test
worker, we randomly sample Rp personal reference images
scored by the worker. Then, the remaining images, scored
by the same worker, are used to evaluate the personalized
regression performance. We compare the proposed algo-
rithm with the conventional algorithm, PAM [34], which
computes a user-specific offset and adds it to the generic
aesthetic score. As done in [34], we test two cases of
Rp = 10 and Rp = 100. This is why we set Rg to 100.

Table 5. Comparison of the Spearman’s coefficients (ρ) on the
FLICKER-AES dataset. Here, +α means that the coefficient is
increased by α through the personalization, as compared with the
generic regression.

Personalized
Generic Rp = 10 Rp = 100

PAM [34] 0.514 +0.006 +0.039
Proposed 0.668 +0.040 +0.044

In other words, we select the smallest Rg under the con-
dition Rg ≥ Rp. In terms of testing time, in Table 1, the
proposed algorithm takes 1.4 × 10−2 sec and 2.9 × 10−2

sec per image at Rp = 10 and Rp = 100, respectively.

In Table 5, when only generic reference images are used,
the proposed algorithm achieves the Spearman’s coefficient
ρ = 0.668. The generic model of PAM yields ρ = 0.514.
Then, we measure the improvement due to personal refer-
ence images. When Rp = 10, the proposed algorithm in-
creases ρ by 0.040 while PAM does by 0.006 only. Note
that the increase 0.040 is even bigger than the increase
(= 0.039) of PAM at Rp = 100. This indicates that the
proposed algorithm achieves the personalization more ef-
fectively using less personal references. Thus, the proposed
algorithm reduces the burden of user annotations for per-
sonalization meaningfully.

5. Conclusions
We proposed a unified approach to the three tasks of aes-

thetic score regression, binary aesthetic classification, and
personalized aesthetics. We developed the aesthetic com-
parator, composed of twin feature extractors and a ternary
classifier. Using the aesthetic comparator, we constructed a
pairwise comparison matrix for reference and input images.
Using the principal eigenvector of the matrix, we regressed
the score of the input. It was shown that the proposed al-
gorithm can be used for binary classification and personal-
ization, as well as score regression, by varying the pairwise
comparison matrix. The proposed unified algorithm outper-
forms the state-of-the-art generic score regressor [18], bi-
nary aesthetic classifier [29], and personalized score regres-
sor [34]. Especially, for binary classification, the proposed
algorithm surpasses the state-of-the-art technique [29] by a
notable gap of 9.0%.
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