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Abstract

We propose a novel guided interactive segmentation
(GIS) algorithm for video objects to improve the segmen-
tation accuracy and reduce the interaction time. First,
we design the reliability-based attention module to an-
alyze the reliability of multiple annotated frames. Sec-
ond, we develop the intersection-aware propagation module
to propagate segmentation results to neighboring frames.
Third, we introduce the GIS mechanism for a user to se-
lect unsatisfactory frames quickly with less effort. Exper-
imental results demonstrate that the proposed algorithm
provides more accurate segmentation results at a faster
speed than conventional algorithms. Codes are available
at https://github.com/yuk6heo/GIS-RAmap.

1. Introduction
Video object segmentation (VOS) is a task to cut out ob-

jects of interest in a video. It is useful in various applica-
tions such as video editing, video summarization, video in-
painting, and self-driving cars. VOS is challenging since
it should deal with multiple objects, object deformation,
and object occlusion. Because of this difficulty, semi-
supervised VOS, which uses a fully annotated segmentation
mask in the first frame, has been widely researched. This
approach can improve the segmentation performance but re-
quires a lot of time and effort for annotations (e.g. around 79
seconds per instance [4]). Also, it does not have a fallback
mechanism when unsatisfactory results are obtained.

Interactive VOS adopts user-friendly annotations, e.g.
scribbles, which are simple enough to provide repeatedly.
Figure 1 shows the round-based interactive VOS process.
First, a user selects a target frame and draws scribble an-
notations on it. After extracting query object information
from the scribbles, the algorithm obtains segmentation re-
sults for all frames. Second, the user finds a frame with un-
satisfactory results and then provides additional scribbles.
The algorithm then exploits both sets of scribbles to refine
the VOS results. This is repeated until the user is satisfied.
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Figure 1: Illustration of the round-based interactive VOS.
The proposed algorithm greatly reduces the inspection time,
by guiding users to select a frame for annotations efficiently
and effectively. It is recommended to watch the supplemen-
tary video with a real-time demo of the proposed guided
interactive system.

Recently, an automatic simulation scheme of the round-
based interactive VOS was designed in [4]. However, the
simulation is significantly different from real applications in
that it immediately determines segmentation results to cor-
rect, by comparing them with the ground-truth. In contrast,
a real user should spend considerable time to inspect the
results and select poorly segmented regions. Since conven-
tional interactive VOS algorithms [7, 20, 22, 24] have been
developed based on the simulation in [4], they do not con-
sider the time for finding unsatisfactory results in practice.
In contrast, we propose a guided interactive segmentation
(GIS) algorithm for video objects, which guides users to
find poorly segmented regions quickly and effectively.

Moreover, although interactive VOS can use the infor-
mation in N annotated frames in the N th round, the con-
ventional algorithms [7, 20] do not exploit those multiple
annotated frames thoroughly. Heo et al. [7] simply aver-
age the features from multiple annotated frames. Miao et
al. [20] use only the best matching result between a target
frame and multiple annotated frames. On the contrary, we
analyze the reliability of each annotated frame to refine seg-
mentation results in a target frame more accurately.

https://github.com/yuk6heo/GIS-RAmap


In this paper, we propose the GIS algorithm using
reliability-based attention (R-attention) maps. First, we
transfer query object information from annotated frames
to a target frame using R-attention maps, which represent
pixel-wise reliability of the annotated frames. Next, we per-
form intersection-aware propagation to propagate segmen-
tation results to neighboring frames sequentially. Third, we
compute a guidance score, called R-score, to reduce or re-
move the processing time for selecting the frame to be an-
notated in each round. Experimental results demonstrate
that the proposed GIS algorithm outperforms recent state-
of-the-arts in both the interactive VOS simulation in [4] and
real-world applications.

This paper has three main contributions:

1. Two novel operators to exploit multiple annotations
and neighboring results are developed for VOS: R-
attention and intersection-aware propagation modules.

2. We propose the notion of guidance in interactive VOS.
3. The proposed GIS algorithm outperforms the state-of-

the-arts significantly in both speed and accuracy.

2. Related Work
Unsupervised VOS: It is a task to find primary objects [14]
without any user annotations in video sequences. Tradi-
tional approaches [13,15,16,25,34] use motion, object pro-
posals, or saliency to solve this problem. Recently, with
the availability of big VOS datasets [26, 38], many deep-
learning-based unsupervised methods [11,18,30,35,39–41]
have been proposed.

Semi-supervised VOS: In semi-supervised VOS, a user
provides fully annotated masks for target objects at the
first frame. Many algorithms have been developed to ex-
tract significant features for target objects using user an-
notations. Early deep learning methods [1, 3, 19, 32] fo-
cused on fine-tuning networks using annotation masks at
the first frames. Instead of the computationally demand-
ing fine-tuning, some algorithms employ optical flow for
initial segment propagation [12] or motion feature extrac-
tion [9]. Also, networks to refine segmentation results in
previous frames without using motion have been developed
in [17, 21]. Instead of the first frame, optimal frames to be
annotated in semi-supervised VOS were determined in [6].
Matching-based algorithms [5,10,23,24,31] perform pixel-
wise feature matching between annotated and target frames
to segment out target objects. For example, key-value mem-
ory operations based on non-local networks [36] are per-
formed in [23, 24] to perform the matching between a tar-
get frame and already segmented frames. In [37], the se-
lection network, which predicts scores of previously seg-
mented frames, is used to choose the frames for segmenta-
tion propagation.

Interactive VOS: It aims at achieving satisfactory VOS re-

sults through an iterative process of drawing simple anno-
tations, such as scribbles, point clicks, or bounding boxes.
Early interactive VOS algorithms [27, 28, 33] constructed
graph models, by connecting pixels with edges and then as-
signing edge weights using hand-craft features. Segmenta-
tion results for query objects were then obtained by graph
optimization techniques.

Recently, deep-learning methods have been developed
for interactive VOS. Benard and Gygli [2] used point clicks
to extract an object mask in a single frame and apply a semi-
supervised VOS algorithm to propagate the mask. Chen et
al. [5] employed pixel-wise metric learning to cut out a
query object using a few point clicks. Caelles et al. [4]
introduced a round-based interactive VOS process and the
automatic simulation algorithm to mimic human interac-
tions in real applications. Many recent interactive algo-
rithms [7, 20, 22, 24] follow this round-based process.

Oh et al. [22] developed two segmentation networks for
interactive VOS: the first one estimates target object regions
from user interactions and the second one propagates the
segmentation results to neighboring frames. Miao et al. [20]
proposed networks to obtain segmentation results through
both interaction and propagation. They employed global
and local distance maps in [31] to match a target frame to
an annotated frame and the previous frame, respectively.
Heo et al. [7] designed global and local transfer modules
to effectively transfer features in annotated and previous
frames to a target frame. Oh et al. [24] encoded annotation
regions into keys and values in a non-local manner. These
interactive VOS algorithms [7, 20, 22, 24], however, have
limitations. First, they do not consider the processing time
to select the poorest segmentation results, on which addi-
tional annotations are provided. Second, they do not fully
exploit the property that scribble data in multiple annotated
frames have different reliability and different relevance to a
target frame.

3. Proposed Algorithm
The proposed algorithm cuts query objects off in a

video I = {I1, . . . , IT } with T frames interactively using
sparse annotations (scribbles or points) in each segmenta-
tion round. Let Iai at time instance ai be the annotated
frame in the ith round. First, the segmentation is performed
bidirectionally starting from Ia1 . Subsequently, in the N -th
round, it is also done bidirectionally, but using all previ-
ously annotated frames Ia = {Ia1 , . . . , IaN }.

Figure 2 shows how the proposed algorithm segments a
target frame It. First, we encode It into the frame feature
Ft. Second, we obtain the interfused object feature Gt by
combining query object information in all annotated frames
in Ia using the R-attention module. Third, using the neigh-
bor frame In ∈ {It−1, It+1} and its segmentation result Yn,
we perform the intersection-aware propagation to yield the
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Figure 2: An overview of the proposed GIS algorithm.

overlapped object feature Ht. Last, the segmentation head
decodes these three features Ft, Gt, and Ht to generate the
segmentation result Yt of the target frame It.

Moreover, we propose a novel guidance mechanism for
interactive VOS. From the R-attention module, we extract
the reliability map Rt to represent pixel-wise reliability of
the segmentation result Yt. Also, by averaging these pixel-
wise scores, we obtain the R-score rt. These guidance data
Rt and rt enable a user to select a less reliable frame and
provide annotations on it more quickly and more effectively.

3.1. Interfused Object Feature

As in [7], we transfer segmentation information in each
annotated frame into a target frame. However, whereas [7]
combines the information from multiple annotated frames
simply through averaging, we fuse transferred object fea-
tures based on their reliability levels. To this end, we de-
velop the R-attention module.

Transition matrix computation: We encode each anno-
tated frame Iai ∈ Ia into Fai to obtain the annotated frame
feature set Fa = {Fa1 , . . . ,FaN }. Each frame feature is
an HW × C1 matrix, in which each row contains the C1-
dimensional feature vector for a pixel. Here, H ×W is the
spatial resolution of the feature. Then, using the ith anno-
tated feature Fai and the target feature Ft, we obtain the
transition matrix

Aai→t = softmax
(
φA(Ft)× φA(Fai)T

)
(1)

of size HW × HW . Here, φA is a feature transform, im-
plemented by a learnable 1 × 1 convolution, to reduce the
dimension of each row vector from C1 to C2. Note in Fig-

ure 2 that a frame feature is used by different modules. To
adapt the same feature for different purposes, we employ
multiple feature transforms, including φA.

In (1), the softmax operation is applied to each column.
Thus, Aai→t is a positive matrix with each column adding
to 1. It is hence the transition matrix [29], whose entry in
row r and column c represents the probability that the cth
pixel in Iai is mapped to the rth pixel in It. We compute the
transition matrices from all annotated frames to It to yield
the transition matrix set Aa→t = {Aa1→t, . . . ,AaN→t}.
Object feature transfer: We use annotations on Iai to gen-
erate an object saliency map via a sparse-to-dense network
in Figure 3. We adopt A-Net [7], the encoder of which
is based on SE-ResNet50 [8], as the sparse-to-dense net-
work. To form the feature of the query object, we combine
three intermediate features: R3 and R5 features from the
encoder and the context feature of the penultimate layer of
the decoder. After making their spatial resolutions identi-
cal, we convolve and then concatenate them. Then, the con-
catenated feature passes through another convolution layer
to form the object feature Eai of size HW × C3. Con-
sequently, the object feature set Ea = {Ea1 , . . . ,EaN } is
obtained from the N annotated frames.

We transfer all object features in Ea to the target frame
It by

Et|ai = Aai→t ×Eai (2)

using the transition matrix Aai→t in (1). Thus, we have the
transferred object feature set Et|a = {Et|a1 , . . . ,Et|aN },
which encodes the object information in It approximately.
Since the reliability of the transition matrix Aai→t is dif-
ferent for each i, it is unreasonable to exploit Et|ai equally
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for the query object segmentation. To address this issue, we
propose the R-attention mechanism.

R-attention: Figure 4 shows how to generate R-attention
maps. Similar to (2), let Ft2|t1 = At1→t2×φR(Ft1) denote
the transferred frame feature from It1 to It2 , where φR is a
feature transform. We obtain the feature difference matrix

Dt|ai = [Ft|ai − Ft|t]
◦2 (3)

where ◦2 is the entry-wise power operator. Note that its en-
try Dt|ai(p, c) equals the squared distance between the cth
feature components of pixel p in Ft|ai and Ft|t. Ideally,
all entries in Dt|ai should be near zero, because both Ft|ai
and Ft|t represent the same frame It. However, they are
not in practice, since the transition matrix Aai→t in (2) is
imperfect. For the same reason, the transferred object fea-
ture Et|ai in (2) may be unreliable. Hence, we define the
reliability map Rt|ai for Et|ai as

Rt|ai(p) =
1

maxcDt|ai(p, c) + ε
for each p, (4)

where ε is a small positive number to prevent division by
zero. A large value of Rt|ai(p) indicates that the pth row
vector (i.e. feature vector for pixel p) in Et|ai is reliable.

By applying the softmax function over the N reliability
maps, we generate the R-attention map Mt|ai for the trans-
ferred object feature Et|ai , which is given by

Mt|ai(p) =
expRt|ai(p)∑N
k=1 expRt|ak(p)

for each p. (5)
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Figure 5: A diagram of the intersection-aware propagation.

Next, we obtain the interfused object feature Gt by fusing
all transferred object features using the R-attention maps,

Gt =

N∑
i=1

Mt|ai ⊗Et|ai (6)

where ⊗ means that Mt|ai is multiplied entry-wise to each
column in Et|ai . Through this R-attention mechanism, the
interfused feature Gt contains more reliable information
about the query object than each individual Et|ai does.

Furthermore, by aggregating Rt|a1 , . . . , Rt|aN , we gen-
erate the overall reliability map Rt by

Rt(p) = max
i

exp
(
Rt|ai(p)− 1

ε

)
. (7)

Note from (4) and (7) that each Rt(p) is in the range [0, 1],
with 1 indicating the maximum reliability level. A high
Rt(p) means that the interfused feature vector for pixel p
in Gt is reliable. Because Gt plays an essential role in
segmenting the target frame It, Rt(p) also represents the
reliability of the segmentation result. Section ?? describes
how to use Rt to guide the interactive VOS process.

3.2. Overlapped Object Feature

When segmenting the target frame It, the segmentation
result Yn of the neighbor frame In ∈ {It−1, It+1} is avail-
able according to the segmentation direction. We exploit
this neighbor information to delineate the query object in It
more accurately. As shown in Figure 5, we first obtain the
neighbor similarity

St = exp
(
− [φS(Ft)− φS(Fn)]◦2

)
(8)

using a feature transform φS . St represents how similar the
features of It and In are to each other. A row vector in St
tends to have entries near one, when the corresponding pixel
belongs to the intersection of the same object between the
adjacent frames, as illustrated in Figure 6.

Next, we convert Fn via another feature transform φY
and concatenate it with Yn. We convolve this concatenated
signal to yield Yn that represents the query object in In.
We then concatenate St and Yn and use another convolu-
tion layer to obtain the overlapped object feature Ht. Note
that St indicates the overlapped region (or intersection) of
the query object in In and It. Therefore, we combine St and
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Yn to recognize the query object feature in the overlapped
region, and hand over this information to the target frame
It via Ht. This intersection-aware propagation of object in-
formation enables the segment head to exploit the neighbor
information selectively and reliably.

Last, we use the frame feature Ft, the interfused object
feature Gt, and the overlapped object feature Ht to obtain
the segmentation mask Yt.

3.3. Guided Interactive VOS Process

In the first round, to segment the target frame It = Ia1 ,
we set In = Ia1 and substitute Yn with the saliency map
of It generated by the sparse-to-dense network. This is be-
cause there is no neighbor frame already segmented. Af-
ter performing the segmentation of Ia1 , we propagate the
segmentation mask Ya1 bidirectionally to segment the other
frames. In the second round, sparse annotations are given
on Ia2 to refine its segmentation result Ya2 , which is also
propagated bidirectionally until another annotated frame is
met. This is repeated until the user is satisfied with the VOS
result. Figure 7 illustrates this process.

Suppose that there are K query objects with their anno-
tations. Then, for each query object in each target frame
It, the segmentation head uses the three features Ft, Gt,
Ht to estimate the object probability map. Consequently,
we have Ŷt,1, . . . , Ŷt,K , where Ŷt,k denotes the probabil-
ity map for the kth query object. By applying the soft ag-
gregation scheme [23] to these maps and then allocating
each pixel to the background or the query object with the
highest probability, we yield the binary segmentation masks
Yt,1, . . . , Yt,K at the target frame.

In interactive VOS, it is important to enable the user to
provide annotations quickly with less effort. Therefore, af-
ter performing the segmentation in each round, we compute
the R-score rt of each frame It,

rt =
α

‖Ut‖
∑
p∈U

Rt(p) +
1− α
‖Ot‖

∑
p∈O

Rt(p) (9)

where Ut is the set of pixels in the entire frame andOt is the
union set of pixels in the segmented object regions. When
α = 0, the pixel-wise reliability in (7) is averaged over the
foreground segments only. When α = 1, it is averaged over
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Figure 7: Illustration of the interactive VOS process.

the entire frame. In this work, α is set to 0.5 to consider all
pixels but also to emphasize the foreground segments.

Guided selection of annotated frames: In practice, it takes
considerable time to find the most poorly segmented frame
and provide annotations. To alleviate this problem, from the
second round, the R-scores {r1, ..., rT } are used to guide
the user to provide additional annotations for the next round.
Instead of a time-consuming search over the entire video,
the user can select the frames for annotations in two ways.

• RS1: The single frame with the lowest R-score is chosen
for next annotations.

• RS4: The four frames with the lowest R-scores are deter-
mined subject to the constraint that their time distances
are at least T/10. In the interactive VOS simulation,
the most poorly segmented frame is selected among the
four frames, by comparing the segmentation results with
the ground-truth. In real applications, users are provided
with the segmentation results of these four guided frames
only. Then, the user chooses a frame among them and
provides annotations. The interactive process terminates,
when the user is satisfied with the guided frames.

3.4. Implementation Details

Network details: To encode each frame It to the frame fea-
ture Ft, we employ SE-ResNet50 [8] from the first layer to
R4 with an output stride 8. Thus, H and W in Section 3.1
are 1

8 of the height and width of an input frame, respectively.
The dimension C1 of each frame feature vector is 1,024,
while the dimensions C2 of output vectors of the four fea-
ture transforms φA, φR, φS , and φY are equally set to 128.
Also, C3 for Et, Gt, and Ht is set to 256. For the segmen-
tation head, we adopt the decoder architecture in [7].

Training: We use the training sets of DAVIS2017 [26]
and YouTube-VOS [38]. To emulate the first round, we
randomly form a mini-sequence by taking five consecutive
frames (one annotated frame and four target frames) from
a video sequence. To emulate the second round, we pick
one additional frame as the second annotated frame. In the
training, we proceed up to the second round due to limited



Table 1: Comparative assessment of the proposed algorithm
with the state-of-the-art interactive VOS algorithms on the
DAVIS2017 validation set. The best results are boldfaced.

AUC-J J@60s AUC-J&F J&F@60s

Oh et al. [22] 0.691 0.734 0.778 0.787
Miao et al. [20] 0.749 0.761 0.787 0.795
Heo et al. [7] 0.771 0.790 0.809 0.827
Oh et al. [24] - - 0.839 0.848

Proposed-GT 0.817 0.826 0.853 0.863
Proposed-RS1 0.818 0.827 0.855 0.864
Proposed-RS4 0.820 0.829 0.856 0.866

.

GPU memories. To imitate sparse annotations, we use two
types: 1) random points and 2) scribble generation in [4].
More implementation details are in the supplementary doc-
ument.

4. Experimental Results
First, we compare the proposed GIS algorithm with the

state-of-the-art interactive VOS algorithms. Second, we an-
alyze the proposed algorithm through various ablation stud-
ies and visualization of feature maps. Third, we perform a
user study to demonstrate the effectiveness of the proposed
algorithm in real applications.

4.1. Comparative Assessment

Interactive VOS simulation is conducted on two datasets:
DAVIS2017 [26] and YouTube-IVOS.

DAVIS2017: In the DAVIS interactive VOS simulation [4],
human interactions are emulated up to 8 rounds by an al-
gorithm. In each round, after VOS is performed, the algo-
rithm determines the frame with the poorest performance,
by comparing the segmentation results with the ground-
truth, and provides additional annotations on it. We follow
this procedure for the comparison with conventional algo-
rithms. We also follow the two guided procedures RS1 and
RS4 in Section 3.3 to confirm the effectiveness of R-scores.
The validation set of 30 video sequences in DAVIS2017 is
used for the assessment. For each video sequence, three
distinct initial scribbles are provided, which means that the
performance is averaged over 90 interactive VOS trials.

We quantify the segmentation performance using the re-
gion similarity (J) and the contour accuracy (F). We mea-
sure the area under the curve (AUC) of a performance-
versus-time graph from 0 to 488 seconds for J score (AUC-
J) or for joint J and F scores (AUC-J&F). Also, we measure
the performance at 60 seconds for J score (J@60s) or for
joint J and F scores (J&F@60s) to assess how accurately
the segmentation is carried out within 60 seconds.

Table 1 compares the proposed GIS algorithm with the
recent state-of-the-art algorithms [7, 20, 22, 24], in which
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Proposed-GT, Proposed-RS1, and Proposed-RS4 denote the
settings when the ground-truth, RS1, and RS4 are used
to choose frames to be annotated in next rounds, respec-
tively. Note that Proposed-GT has the same experimental
conditions as the conventional algorithms [7, 20, 22, 24].
In Proposed-RS4, the DAVIS algorithm selects the poor-
est frame among the four guided frames using the ground-
truth. In all settings, the DAVIS algorithm provides anno-
tations. The scores of the conventional algorithms are pro-
vided by the respective authors. It can be observed from
Table 1 that the proposed algorithm outperforms the state-
of-the-arts by significant margins in all metrics. In other
words, the proposed algorithm performs the best in both ac-
curacy and speed. Also, Proposed-RS1 and Proposed-RS4
perform better than Proposed-GT, by employing R-scores
and selecting annotated frames effectively. Figure 8 shows
the J&F scores according to the rounds. The proposed algo-
rithm yields the best score in every round with no exception.

YouTube-IVOS: For extensive experiments, we construct
the YouTube-IVOS dataset from YouTube-VOS [38], which
is the largest VOS dataset. For the DAVIS algorithm to
emulate user interactions, ground-truth segmentation masks
are needed. Since the validation set in YouTube-VOS does
not provide the ground-truth, we sample 200 videos from
its training set to compose YouTube-IVOS. For each video,
we generate four different initial annotations by varying the
number of point clicks. Specifically, we randomly pick 5,
10, 20, and 50 point clicks from the ground-truth mask for
each query object and then use those clicks as annotations
in the first round. The interactive VOS is performed up to
4 rounds, since the performance is saturated in early rounds
due to the short lengths of the YouTube-VOS videos.

Table 2 compares the average J&F scores of the proposed
algorithm with those of Miao et al. [20] and Heo et al. [7]
according to the rounds. Notice that [22] and [24] are not
compared in this test, because their full source codes are
unavailable. In this test, the proposed GIS network and the
Heo et al.’s network are trained without the 200 videos in
YouTube-IVOS. We see that the proposed algorithm outper-
forms the other algorithms meaningfully in all rounds.



Table 2: Comparative assessment of the proposed algorithm
with the state-of-the-art interactive VOS algorithms on the
Youtube-IVOS dataset.

J&F-1st J&F-2nd J&F-3rd J&F-4th

Miao et al. [20] 0.525 0.620 0.674 0.706
Heo et al. [7] 0.643 0.721 0.768 0.797
Proposed-GT 0.672 0.754 0.806 0.830

Number of rounds
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Figure 9: Ablation study results on the DAVIS2017 valida-
tion set.

4.2. Analysis

Ablation study: We analyze the effectiveness of three com-
ponents in the proposed algorithm:

(1) R-attention (RA)

(2) Intersection-aware propagation (IAP)

(3) R-score guidance with four candidate frames (RS4)

Figure 9 plots the J&F scores of four settings A, B, C, and
D, combining these three components, on the DAVIS2017
validation set. First, using R-attention maps, the overall per-
formance in every round increases significantly (gaps be-
tween A and B). Also, the intersection-aware propagation
improves the performance especially in early rounds (gaps
between B and C). The R-score guidance affects the perfor-
mance only slightly (gaps between C and D), because in this
test the computer searches the frames to be annotated using
the ground-truth. In real applications, the R-score guidance
enables human users to search the frames efficiently and
thus reduces the overall segmentation time, as will be veri-
fied in later experiments.

Intersection-aware propagation: We compare the pro-
posed IAP module with two existing propagation methods:
the local distance map (LDM) in [20] and the local transfer
module (LTM) in [7]. LDM matches each pixel in a target
frame to a local region in a neighbor frame at the feature
level to estimate a local distance map, while LTM transfers
the segmentation result of a neighbor frame based on the
local affinity. In Table 3, the baseline means the proposed
network without IAP. In other words, the baseline uses only
the frame feature Ft and the interfused object feature Gt

Table 3: Comparison of the proposed intersection-aware
propagation (IAP) module with conventional local propa-
gation methods on the DAVIS2017 validation dataset.

J&F-1st J&F-3rd J&F-5th FPS

Baseline 0.717 0.821 0.839 9.26

Baseline+LDM [20] 0.727 0.824 0.844 8.23
Baseline+LTM [7] 0.730 0.828 0.846 8.69
Baseline+IAP 0.737 0.832 0.850 8.72

for the segmentation. We plug LDM or LTM into the base-
line. Table 3 compares the J&F scores in 1st, 3rd, and 5th
rounds and the segmentation speeds (frames per second,
FPS). Compared with LDM and LTM, the proposed IAP
helps the baseline network to achieve higher segmentation
accuracies and a faster speed.

R-attention maps: Figure 10 illustrates R-attention maps
Mt|ai in (5). Specifically, the first and second rows in Fig-
ure 10 show the R-attention maps of the first annotation at
Ia1 and the second annotation at Ia2 , respectively. We sam-
ple time instances t1 ∼ t5 uniformly between a1 and a2.
Note that R-attention values depend on the pixel-wise fea-
ture similarities between annotated and target frames. For
instance, Mt4|a1 has low R-attention values on the query
objects (cart and two people), which have significantly dif-
ferent appearance and sizes between Ia1 and It4 . Also,
Mt3|a2 has low R-attention values around the plywood ramp
that almost disappears in Ia2 . This example indicates that
R-attention module faithfully provides the reliability infor-
mation of the transferred object feature from the annotated
frame to the target frame.

Reliability maps and R-scores: Examples of reliability
maps and R-scores are in Figure 11. In the first round, a
poor segmentation result for a woman marked in yellow is
obtained, because she is partly occluded by a man riding
a bike. Thus, the proposed algorithm yields the reliability
map that has low values within the black box containing
the woman. As the segmentation result is refined in sub-
sequent rounds, the reliability map has higher values and
the R-score gets larger. This means that both the reliability
map Rt in (4) and the R-score rt in (9) are good indicators
of how accurately the target frame It is segmented.

4.3. User Study

We conducted a user study to assess the proposed GIS
algorithm in real applications. We recruited 12 volunteers,
who provided scribbles iteratively until they were satisfied.
We measured the average time in seconds per video (SPV),
including the time for providing scribbles, the running time
of the algorithm, and the time for finding unsatisfactory
frames. Also, we measured the average rounds per video
(RPV) and the average J&F score over all video sequences.
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Figure 10: Visualization of R-attention maps and segmentation results on the “soapbox” sequence in the second round.
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Figure 11: The reliability maps and R-scores for the 33rd
frame of the “India” video in the first, third, and eighth
rounds. The number in the upper right corner of each re-
liability map is the R-score.

Table 4 compares these user study results on the valida-
tion set in DAVIS2017 [26]. ‘Proposed w/o RS’ denotes the
proposed algorithm without using R-scores. All three set-
tings of the proposed algorithm outperform the state-of-the-
art algorithm [7] in all metrics. This indicates that the pro-
posed algorithm requires less running time and less interac-
tion, while providing better segmentation results. Proposed-
RS1 and Proposed-RS4 require less time to complete the
process than ‘Proposed w/o RS’ with only negligible per-
formance degradation, by removing or reducing the time
for selecting unsatisfactory frames as shown in Figure 12.
Especially, the total time for segmenting a video is signif-
icantly reduced in Proposed-RS1, which needs no time for
inspection.

5. Conclusions
We proposed the novel GIS algorithm for video objects

based on R-attention and intersection-aware propagation.
First, the interfused object feature is extracted by transfer-
ring query object information from annotated frames to a
target frame using the R-attention module. Second, the
overlapped object feature is obtained via the intersection-
aware propagation using a neighbor frame. Then, the seg-
mentation is performed using the frame feature, interfused

Table 4: User study results.

SPV(s) RPV J&F

Heo et al. [7] 66.83 2.42 0.769
Proposed w/o RS 46.01 1.89 0.794
Proposed-RS1 34.59 1.82 0.789
Proposed-RS4 37.10 1.69 0.794
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Figure 12: The total time and the inspection time for se-
lecting unsatisfactory frames per video. Each user is repre-
sented by each mark.

object feature, and overlapped object feature. Moreover, we
developed the GIS mechanism that enables users to deter-
mine next annotated frames quickly. Experimental results
showed that the proposed algorithm outperforms the con-
ventional algorithms significantly.
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